6.235 Problems 23401 to 23500

Table 6.469: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23401

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

23402

\[ {} y^{\prime \prime }+x y = 0 \]

23403

\[ {} y+x y^{\prime \prime } = 0 \]

23404

\[ {} y+x y^{\prime \prime } = 0 \]

23405

\[ {} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23406

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2 \]

23407

\[ {} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0 \]

23408

\[ {} y y^{\prime }+y^{\prime \prime } = 2 \]

23409

\[ {} 3 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

23410

\[ {} y^{\prime \prime } \cos \left (x \right )+3 y = 1 \]

23411

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0 \]

23412

\[ {} \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } = 0 \]

23413

\[ {} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x} \]

23414

\[ {} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0 \]

23415

\[ {} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right ) \]

23416

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0 \]

23417

\[ {} 4 y+y^{\prime \prime } = 0 \]

23418

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

23419

\[ {} 4 y^{\prime \prime \prime }-2 y^{\prime \prime }+6 y^{\prime }-7 y = 0 \]

23420

\[ {} 2 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-y = 0 \]

23421

\[ {} y^{\prime \prime \prime }-y^{\prime }+2 y = 0 \]

23422

\[ {} y^{\prime \prime }-y^{\prime }+6 y = 0 \]

23423

\[ {} 5 y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

23424

\[ {} 6 y^{\prime \prime \prime }-4 i y^{\prime \prime }+\left (3+i\right ) y^{\prime }-2 y = 0 \]

23425

\[ {} 3 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

23426

\[ {} 6 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+y^{\prime \prime }-7 y^{\prime }-6 y = 0 \]

23427

\[ {} 3 y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

23428

\[ {} 2 y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

23429

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

23430

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

23431

\[ {} 2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

23432

\[ {} y^{\prime \prime }+9 y = 0 \]

23433

\[ {} 3 y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

23434

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

23435

\[ {} 2 y^{\prime \prime }-4 y^{\prime }-y = 0 \]

23436

\[ {} 4 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

23437

\[ {} y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

23438

\[ {} 2 y^{\prime \prime }+y = 0 \]

23439

\[ {} y^{\prime \prime }+16 y = 0 \]

23440

\[ {} 2 y^{\prime \prime }+14 y^{\prime }+25 y = 0 \]

23441

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

23442

\[ {} y^{\prime \prime }+9 y = 0 \]

23443

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

23444

\[ {} 2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

23445

\[ {} 4 y+y^{\prime \prime } = 0 \]

23446

\[ {} 2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

23447

\[ {} y^{\prime \prime }+25 y = 0 \]

23448

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

23449

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

23450

\[ {} 8 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

23451

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

23452

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

23453

\[ {} y^{\prime \prime }+6 y = 0 \]

23454

\[ {} y^{\prime \prime }-9 y = 0 \]

23455

\[ {} y^{\prime }-3 y = 0 \]

23456

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

23457

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

23458

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

23459

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 0 \]

23460

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

23461

\[ {} y^{\prime \prime }-i y^{\prime }+12 y = 0 \]

23462

\[ {} y^{\prime \prime }+3 y = 0 \]

23463

\[ {} y^{\prime \prime }-4 y = 0 \]

23464

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

23465

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

23466

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

23467

\[ {} 4 y+y^{\prime \prime } = 0 \]

23468

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

23469

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

23470

\[ {} y^{\prime \prime }+y = 0 \]

23471

\[ {} y^{\prime \prime }+6 y^{\prime }+12 y = 0 \]

23472

\[ {} y^{\prime \prime }+20 y^{\prime }+64 y = 0 \]

23473

\[ {} y^{\prime \prime }+9 y^{\prime }+4 y = 0 \]

23474

\[ {} 5 y^{\prime \prime }+10 y^{\prime }+20 y = 0 \]

23475

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

23476

\[ {} 6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

23477

\[ {} y^{\prime \prime }+5 y^{\prime }+y = 0 \]

23478

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 0 \]

23479

\[ {} 4 y^{\prime \prime }+8 y^{\prime }+4 y = 0 \]

23480

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

23481

\[ {} [x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+6 x \left (t \right ) = 0, y^{\prime \prime }\left (t \right )-x^{\prime }\left (t \right )+6 y \left (t \right ) = 0] \]

23482

\[ {} y^{\prime \prime }-2 r y^{\prime }+\left (r^{2}-\frac {\alpha ^{2}}{4}\right ) y = 0 \]

23483

\[ {} y^{\prime \prime }-2 \left (r +\beta \right ) y^{\prime }+r^{2} y = 0 \]

23484

\[ {} 5 x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

23485

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23486

\[ {} 3 x^{2} y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

23487

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

23488

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

23489

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+5 \left (x -1\right ) y^{\prime }+4 y = 0 \]

23490

\[ {} -3 y+x y^{\prime }+2 x^{2} y^{\prime \prime } = 0 \]

23491

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

23492

\[ {} 2 y-2 x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23493

\[ {} x^{2} y^{\prime \prime }+\frac {7 x y^{\prime }}{2}-\frac {3 y}{2} = 0 \]

23494

\[ {} \left (x +3\right )^{2} y^{\prime \prime }+3 \left (x +3\right ) y^{\prime }+5 y = 0 \]

23495

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y = 0 \]

23496

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

23497

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23498

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23499

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23500

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]