6.234 Problems 23301 to 23400

Table 6.467: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

23301

\[ {} \cos \left (y\right )+y^{\prime } \sin \left (x \right ) = 0 \]

23302

\[ {} y+\cos \left (x \right )+\left (x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

23303

\[ {} 3 x^{2} y+y^{2}-\left (-x^{3}-2 x y\right ) y^{\prime } = 0 \]

23304

\[ {} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0 \]

23305

\[ {} 2 x -y \sin \left (x y\right )+\left (6 y^{2}-x \sin \left (x y\right )\right ) y^{\prime } = 0 \]

23306

\[ {} x -y+\left (y-x +2\right ) y^{\prime } = 0 \]

23307

\[ {} x +y+\left (x -y\right ) y^{\prime } = 0 \]

23308

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

23309

\[ {} y^{\prime } = \frac {-x +y+1}{y-x +3} \]

23310

\[ {} y-x y^{\prime } = 0 \]

23311

\[ {} x^{2}-2 y+x y^{\prime } = 0 \]

23312

\[ {} y+\left (2 x -y^{2}\right ) y^{\prime } = 0 \]

23313

\[ {} y-2 x -x y^{\prime } = 0 \]

23314

\[ {} y-\left (x -2 y\right ) y^{\prime } = 0 \]

23315

\[ {} x^{4}+y^{4}-x y^{3} y^{\prime } = 0 \]

23316

\[ {} x^{2}-y^{2}+x +2 y y^{\prime } x = 0 \]

23317

\[ {} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0 \]

23318

\[ {} 5 x -y+3 x y^{\prime } = 0 \]

23319

\[ {} x y^{\prime }+y = 3 \]

23320

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

23321

\[ {} x^{2}+y^{2}+1-2 y y^{\prime } x = 0 \]

23322

\[ {} -x^{2} y+\left (y^{3}+x^{3}\right ) y^{\prime } = 0 \]

23323

\[ {} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

23324

\[ {} 3 y+\left (7 x -y\right ) y^{\prime } = 0 \]

23325

\[ {} {\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime } = 0 \]

23326

\[ {} x y-\left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

23327

\[ {} x y+1+y^{2} y^{\prime } = 0 \]

23328

\[ {} x -y+\left (y+2 x \right ) y^{\prime } = 0 \]

23329

\[ {} y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

23330

\[ {} y^{\prime } = \frac {x -y}{x +y+2} \]

23331

\[ {} y^{\prime } = \frac {2 x +y-4}{x -y+1} \]

23332

\[ {} y^{\prime } = \frac {3 x -2 y+7}{2 x +3 y+9} \]

23333

\[ {} y^{\prime } = \frac {5 x -y-2}{x +y+4} \]

23334

\[ {} y^{\prime } = \frac {x -y+5}{2 x -y-3} \]

23335

\[ {} y^{\prime } = \frac {-x +y+1}{3 x -y-1} \]

23336

\[ {} y^{\prime } = \frac {y}{x -y+1} \]

23337

\[ {} y^{\prime } = \frac {2 x}{x -y+1} \]

23338

\[ {} y^{\prime } = -\frac {2 y+x}{y} \]

23339

\[ {} x^{2}+y^{2}-2 y y^{\prime } x = 0 \]

23340

\[ {} y^{\prime } = \frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2} \]

23341

\[ {} y^{\prime } = \frac {2 x +y-4}{x -y+1} \]

23342

\[ {} y^{\prime \prime }+y^{\prime } = 3 \]

23343

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 0 \]

23344

\[ {} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{2 y} \]

23345

\[ {} y^{\prime \prime }+y = 0 \]

23346

\[ {} x y^{\prime \prime }+y^{\prime } = 3 \]

23347

\[ {} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x} = 0 \]

23348

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

23349

\[ {} -y+y^{\prime \prime } = 0 \]

23350

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime } = 0 \]

23351

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}} = 0 \]

23352

\[ {} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{y} \]

23353

\[ {} y^{\prime \prime } = y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \]

23354

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

23355

\[ {} y^{\prime \prime }+x y = 0 \]

23356

\[ {} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x} \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]

23358

\[ {} y^{\prime \prime }+\cos \left (y\right ) = 0 \]

23359

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3 \]

23360

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

23361

\[ {} y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x^{2}} = 1 \]

23362

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

23363

\[ {} x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2 = 0 \]

23364

\[ {} y^{\prime }+\sqrt {y} = 3 x \]

23365

\[ {} y^{\prime \prime }+x y = x \]

23366

\[ {} 2 y-3 x y^{\prime \prime }+4 y^{\prime } = 0 \]

23367

\[ {} y^{\prime \prime \prime } = 2 \]

23368

\[ {} {\mathrm e}^{x} {y^{\prime }}^{2}+3 y = 0 \]

23369

\[ {} y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

23370

\[ {} y y^{\prime } = 3 \]

23371

\[ {} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1 \]

23372

\[ {} 7 y^{\prime }-x y = 0 \]

23373

\[ {} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0 \]

23374

\[ {} y^{\prime } = {\mathrm e}^{2 x} \]

23375

\[ {} y^{\prime \prime \prime } = 0 \]

23376

\[ {} y^{\prime \prime \prime } = x^{3} \]

23377

\[ {} y^{\prime \prime } = \sin \left (x \right ) \]

23378

\[ {} y^{\prime \prime } = 3 x \]

23379

\[ {} y^{\prime \prime \prime \prime } = 0 \]

23380

\[ {} y^{\prime \prime \prime } = x^{2} \]

23381

\[ {} y^{\left (5\right )} = 0 \]

23382

\[ {} y^{\prime \prime }+9 y = 0 \]

23383

\[ {} y^{\prime \prime }-4 y = 0 \]

23384

\[ {} y^{\prime \prime }+a^{2} y = 0 \]

23385

\[ {} x y^{\prime }+y = 0 \]

23386

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

23387

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

23388

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

23389

\[ {} y^{\prime \prime }+y = 0 \]

23390

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

23391

\[ {} y^{\prime }+y^{\prime \prime \prime } = 0 \]

23392

\[ {} 2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

23393

\[ {} x y^{\prime \prime }-3 y^{\prime }-5 y = 0 \]

23394

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23395

\[ {} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y = 0 \]

23396

\[ {} 4 y+y^{\prime \prime } = 0 \]

23397

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

23398

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

23399

\[ {} 3 y^{\prime \prime }+48 y^{\prime }+192 y = 0 \]

23400

\[ {} x y^{\prime \prime }+4 y^{\prime } = 0 \]