| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \cos \left (y\right )+y^{\prime } \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\cos \left (x \right )+\left (x +\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y+y^{2}-\left (-x^{3}-2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x -y \sin \left (x y\right )+\left (6 y^{2}-x \sin \left (x y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -y+\left (y-x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {-x +y+1}{y-x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (2 x -y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 x -x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\left (x -2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4}+y^{4}-x y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-y^{2}+x +2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2}+2 y^{2}+x +\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 x -y+3 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+1-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -x^{2} y+\left (y^{3}+x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y+\left (7 x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{\frac {y}{x}}-\frac {y}{x}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y-\left (x^{2}-y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+1+y^{2} y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x -y+\left (y+2 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y}{x +y+2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x +y-4}{x -y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x -2 y+7}{2 x +3 y+9}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {5 x -y-2}{x +y+4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y+5}{2 x -y-3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {-x +y+1}{3 x -y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x -y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x}{x -y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {2 y+x}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y^{2}-2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sqrt {2}\, \sqrt {\frac {x +y}{x}}}{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x +y-4}{x -y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{2 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{\prime } \left (1+{y^{\prime }}^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x^{2}} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\sqrt {y} = 3 x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 x y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} {y^{\prime }}^{2}+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 7 y^{\prime }-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-3 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-7 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+48 y^{\prime }+192 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|