| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \sec \left (x -2 y\right )^{2}+\cos \left (3 y+x \right )-3 \sin \left (3 x \right )+\left (3 \cos \left (3 y+x \right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 x^{2} {\mathrm e}^{x^{3}}+{\mathrm e}^{2 y}+\left (2 x \,{\mathrm e}^{2 y}-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1-6 x^{2} y}{x}+\frac {\left (2+5 y-3 x^{2} y\right ) y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {8 x^{4} y+12 y^{2} x^{3}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{x^{2} y^{4}+1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {y^{5} x^{2}+y^{2}+y}{x^{2} y^{4}+1}+\frac {\left (y^{4} x^{3}+2 x y+x \right ) y^{\prime }}{x^{2} y^{4}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x -2 y+2 y^{2}+\left (2 x y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y-y^{2}+6 x^{3} y^{3}+\left (2 x^{4} y^{2}-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4}-3 y+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 20 y-20 x y^{2}+\left (5 x -8 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}+2 x y^{3}+1+3 x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+2 y+y^{\prime } \left (1+x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y \cos \left (x \right )-1+y^{\prime } \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+6 x y^{3}-4 y^{4}-\left (2 x +4 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2} y \ln \left (y\right )+\left (2 x^{3}+2 y^{3}+3 y^{3} \ln \left (y\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +2 x y^{2}-y^{3}-y^{5}+\left (1-3 x y^{2}-3 x y^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y^{2}+\left (3-2 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 x^{3}+\left (2 x -\frac {x^{4}}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+y^{2}+\left (x y-3 x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+3 y = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = 2 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{x} = -x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x^{2} y = \left (x^{2}+1\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = \ln \left (x \right )-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \tan \left (x \right ) = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {y}{-x^{2}+1} = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+p \left (x \right ) y = q \left (x \right ) y^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = \frac {x^{2}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{5} y^{\prime }+5 y^{6} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x y^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2\right ) y^{\prime \prime }-y^{\prime } \left (1+x \right )+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime }+11 y^{\prime }+4 y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = -2, z^{\prime }\left (x \right ) = x \,{\mathrm e}^{y \left (x \right )+2 x}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right )+y \left (x \right ) = {\mathrm e}^{x}, z^{\prime }\left (x \right ) = y \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y \left (x \right ) y^{\prime }\left (x \right ) = -x, y \left (x \right ) z^{\prime }\left (x \right ) = 2]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [y^{\prime }\left (x \right )+2 z \left (x \right ) = y \left (x \right ), z^{\prime }\left (x \right )+4 y \left (x \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = x +2 z \left (x \right ), z^{\prime }\left (x \right ) = 3 x +y \left (x \right )-z \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = x^{2}+6 y \left (x \right )+4 z \left (x \right ), z^{\prime }\left (x \right ) = y \left (x \right )+3 z \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = y \left (x \right )+z \left (x \right )+x, z^{\prime }\left (x \right ) = 1-y \left (x \right )-z \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = f \left (x \right )+a y \left (x \right )+b z \left (x \right ), z^{\prime }\left (x \right ) = g \left (x \right )+c y \left (x \right )+d z \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \cos \left (x y\right )+y-x +\left (x \cos \left (x y\right )+x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -y+1+\left (2 y-2 x +3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x^{5}+x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{5} x^{2}+{\mathrm e}^{x^{3}} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2 y+2\right ) y^{\prime } = 3 x -y-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sqrt {a^{2}+x^{2}} = y \sqrt {y^{2}-a^{2}}\, y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \cos \left (y\right )+x -\left ({\mathrm e}^{x} \sin \left (y\right )+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+\left (1-3 x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x y^{\prime }\left (x \right ) = y \left (x \right ), z^{\prime }\left (x \right ) = 3 y \left (x \right )-x]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +\frac {x}{x^{2}+y^{2}}\right ) y^{\prime }+y-\frac {y}{x^{2}+y^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = x {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{y-y^{3}+2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (y\right )^{3} \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y-x = \left (x y^{2}+x -y^{2}-1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y+2 y^{3}-\left (2 x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x +2 x +\frac {y^{2}}{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{2}+\left (1-x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y^{2}+x^{2} y^{\prime } = 2 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [y^{\prime }\left (x \right ) = z \left (x \right ), z^{\prime }\left (x \right ) = w \left (x \right ), w^{\prime }\left (x \right ) = y \left (x \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{2 x +3 y}+{\mathrm e}^{4 x -5 y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{2}-2 x^{2} = 2 y y^{\prime } x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2+3 y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = x^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {3 y}{2} = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = 3 x^{3}+4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = -x^{5}+4 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k y^{\prime }+L y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {327 y^{\prime }}{100}-\frac {21 y}{50} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }-6 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = x^{2}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 1-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|