5.3.43 Problems 4201 to 4300

Table 5.131: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

12795

\[ {} y^{\prime \prime \prime }+x y^{\prime }+n y = 0 \]

12796

\[ {} y^{\prime \prime \prime }-x y^{\prime }-n y = 0 \]

12803

\[ {} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

12804

\[ {} y^{\prime \prime \prime \prime }+\left (x^{2} a +b \lambda +c \right ) y^{\prime \prime }+\left (x^{2} a +\beta \lambda +\gamma \right ) y = 0 \]

12806

\[ {} a^{4} x^{4} y+4 a^{3} x^{3} y^{\prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a x y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

12809

\[ {} y^{\prime \prime \prime \prime } x -\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0 \]

12810

\[ {} x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0 \]

12811

\[ {} x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

12814

\[ {} x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0 \]

12816

\[ {} x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0 \]

12817

\[ {} x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0 \]

12818

\[ {} x^{3} y^{\prime \prime \prime \prime }+2 x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0 \]

12820

\[ {} x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (3+n \right ) \left (n -2\right )\right ) y = 0 \]

12821

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 x^{4} y = 0 \]

12822

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0 \]

12823

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0 \]

12824

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0 \]

12825

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0 \]

12827

\[ {} a y+12 x^{2} y^{\prime \prime }+8 x^{3} y^{\prime \prime \prime }+x^{4} y^{\prime \prime \prime \prime } = 0 \]

12828

\[ {} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 \left (a -1\right ) a -1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0 \]

12829

\[ {} x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0 \]

12830

\[ {} \nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0 \]

12831

\[ {} \left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \]

12832

\[ {} \left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \]

12833

\[ {} y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y = 0 \]

12834

\[ {} y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0 \]

12837

\[ {} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (-a^{2} y+y^{\prime \prime }\right ) = 0 \]

12839

\[ {} y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

12840

\[ {} y^{\left (5\right )}-a x y-b = 0 \]

12841

\[ {} y^{\left (5\right )}+a \,x^{\nu } y^{\prime }+a \nu \,x^{\nu -1} y = 0 \]

12843

\[ {} x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y = 0 \]

12844

\[ {} x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

12845

\[ {} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

12846

\[ {} x^{2} y^{\prime \prime \prime \prime }-a y = 0 \]

12847

\[ {} x^{10} y^{\left (5\right )}-a y = 0 \]

12848

\[ {} x^{{5}/{2}} y^{\left (5\right )}-a y = 0 \]

12849

\[ {} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

12852

\[ {} y^{\prime \prime }-6 y^{2}-x = 0 \]

12853

\[ {} y^{\prime \prime }-6 y^{2}+4 y = 0 \]

12854

\[ {} y^{\prime \prime }+a y^{2}+b x +c = 0 \]

12855

\[ {} y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

12857

\[ {} y^{\prime \prime }-2 y^{3} a^{2}+2 a b x y-b = 0 \]

12858

\[ {} y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

12859

\[ {} y^{\prime \prime }+d +b y^{2}+c y+a y^{3} = 0 \]

12860

\[ {} y^{\prime \prime }+a \,x^{r} y^{2} = 0 \]

12861

\[ {} y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \]

12862

\[ {} y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}} = 0 \]

12864

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

12865

\[ {} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

12866

\[ {} a \sin \left (y\right )+y^{\prime \prime } = 0 \]

12867

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

12868

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

12869

\[ {} y^{\prime \prime } = \frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \]

12870

\[ {} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

12871

\[ {} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y = 0 \]

12872

\[ {} y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \]

12873

\[ {} y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y = 0 \]

12874

\[ {} y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

12875

\[ {} y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

12876

\[ {} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

12877

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

12878

\[ {} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

12879

\[ {} -y^{3}+y y^{\prime }+y^{\prime \prime } = 0 \]

12880

\[ {} y^{\prime \prime }+y y^{\prime }-y^{3}+a y = 0 \]

12881

\[ {} y^{\prime \prime }+\left (3 a +y\right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y = 0 \]

12882

\[ {} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) = 0 \]

12883

\[ {} y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2} = 0 \]

12884

\[ {} y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 a^{2} y-b = 0 \]

12885

\[ {} y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+f \left (x \right ) y^{2} = 0 \]

12886

\[ {} y^{\prime \prime }-2 a y y^{\prime } = 0 \]

12887

\[ {} y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

12888

\[ {} b y+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12889

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12890

\[ {} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12891

\[ {} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

12892

\[ {} b y+a y {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12893

\[ {} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime } = 0 \]

12894

\[ {} y^{\prime \prime }-a \left (x y^{\prime }-y\right )^{v} = 0 \]

12895

\[ {} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

12897

\[ {} y^{\prime \prime } = a \sqrt {1+{y^{\prime }}^{2}}+b \]

12898

\[ {} y^{\prime \prime } = a \sqrt {b y^{2}+{y^{\prime }}^{2}} \]

12899

\[ {} y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

12900

\[ {} y^{\prime \prime }-2 a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

12901

\[ {} y^{\prime \prime }-a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

12902

\[ {} y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

12903

\[ {} y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

12905

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

12906

\[ {} x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

12907

\[ {} x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

12908

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

12909

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

12910

\[ {} x y^{\prime \prime }+\left (y-1\right ) y^{\prime } = 0 \]

12911

\[ {} x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

12912

\[ {} x y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2}-b = 0 \]

12914

\[ {} x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

12915

\[ {} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

12916

\[ {} x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

12917

\[ {} x^{2} y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2}-b \,x^{2} = 0 \]

12918

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

12919

\[ {} x^{2} y^{\prime \prime }-\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} = 0 \]