5.3.44 Problems 4301 to 4400

Table 5.133: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

12921

\[ {} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

12922

\[ {} 2 y+a y^{3}+9 x^{2} y^{\prime \prime } = 0 \]

12923

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

12924

\[ {} x^{3} y^{\prime \prime }-a \left (x y^{\prime }-y\right )^{2} = 0 \]

12925

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

12926

\[ {} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b = 0 \]

12927

\[ {} x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

12928

\[ {} x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

12929

\[ {} x^{4} y^{\prime \prime }-x^{2} y^{\prime } \left (x +y^{\prime }\right )+4 y^{2} = 0 \]

12930

\[ {} \left (x y^{\prime }-y\right )^{3}+x^{4} y^{\prime \prime } = 0 \]

12931

\[ {} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0 \]

12932

\[ {} \left (x^{2} a +b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {x^{2} a +b x +c}}\right ) = 0 \]

12933

\[ {} y y^{\prime \prime }-a = 0 \]

12934

\[ {} y y^{\prime \prime }-a x = 0 \]

12935

\[ {} y y^{\prime \prime }-x^{2} a = 0 \]

12936

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-a = 0 \]

12937

\[ {} y y^{\prime \prime }+y^{2}-a x -b = 0 \]

12938

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

12939

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

12940

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

12941

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

12942

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-\ln \left (y\right ) y^{2} = 0 \]

12943

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{\prime }-f^{\prime }\left (x \right ) y-y^{3} = 0 \]

12944

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+f^{\prime }\left (x \right ) y^{\prime }-y f^{\prime \prime }\left (x \right )+f \left (x \right ) y^{3}-y^{4} = 0 \]

12945

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }+b y^{2} = 0 \]

12946

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

12947

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-\left (-1+a y\right ) y^{\prime }+2 a^{2} y^{2}-2 y^{3} b^{2}+a y = 0 \]

12948

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

12949

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

12950

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

12951

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (g \left (x \right )+f \left (x \right ) y^{2}\right ) y^{\prime }-y \left (g^{\prime }\left (x \right )-f^{\prime }\left (x \right ) y^{2}\right ) = 0 \]

12952

\[ {} y y^{\prime \prime }-3 {y^{\prime }}^{2}+3 y y^{\prime }-y^{2} = 0 \]

12953

\[ {} y y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

12954

\[ {} y y^{\prime \prime }+a \left (1+{y^{\prime }}^{2}\right ) = 0 \]

12955

\[ {} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{3} = 0 \]

12956

\[ {} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{1-a} = 0 \]

12957

\[ {} y y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{2} y^{\prime }+c y^{4} = 0 \]

12958

\[ {} y y^{\prime \prime }-\frac {\left (a -1\right ) {y^{\prime }}^{2}}{a}-f \left (x \right ) y^{2} y^{\prime }+\frac {a f \left (x \right )^{2} y^{4}}{\left (2+a \right )^{2}}-\frac {a f^{\prime }\left (x \right ) y^{3}}{2+a} = 0 \]

12959

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}-1-2 a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = 0 \]

12960

\[ {} -y^{\prime }+{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime \prime } = 0 \]

12961

\[ {} 2 y^{\prime } \left (1+y^{\prime }\right )+\left (x -y\right ) y^{\prime \prime } = 0 \]

12962

\[ {} \left (x -y\right ) y^{\prime \prime }-\left (1+y^{\prime }\right ) \left (1+{y^{\prime }}^{2}\right ) = 0 \]

12963

\[ {} \left (x -y\right ) y^{\prime \prime }-h \left (y^{\prime }\right ) = 0 \]

12964

\[ {} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0 \]

12965

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+a = 0 \]

12966

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a = 0 \]

12967

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3} = 0 \]

12968

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-8 y^{3}-4 y^{2} = 0 \]

12969

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (2 y+x \right ) = 0 \]

12970

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (a y+b \right ) y^{2} = 0 \]

12971

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

12972

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \]

12973

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-3 y^{4} = 0 \]

12974

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

12975

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

12976

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}-4 y^{2} = 0 \]

12977

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2} = 0 \]

12978

\[ {} 2 y y^{\prime \prime }-6 {y^{\prime }}^{2}+y^{2} \left (1+a y^{3}\right ) = 0 \]

12979

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} \left (1+{y^{\prime }}^{2}\right ) = 0 \]

12980

\[ {} 2 \left (y-a \right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

12981

\[ {} 3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-x^{2} a -b x -c = 0 \]

12982

\[ {} 3 y y^{\prime \prime }-5 {y^{\prime }}^{2} = 0 \]

12983

\[ {} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+4 y = 0 \]

12984

\[ {} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}-12 y^{3} = 0 \]

12985

\[ {} 4 y y^{\prime \prime }-3 {y^{\prime }}^{2}+a y^{3}+b y^{2}+c y = 0 \]

12986

\[ {} 4 y y^{\prime \prime }-5 {y^{\prime }}^{2}+a y^{2} = 0 \]

12987

\[ {} 12 y y^{\prime \prime }-15 {y^{\prime }}^{2}+8 y^{3} = 0 \]

12988

\[ {} n y y^{\prime \prime }-\left (n -1\right ) {y^{\prime }}^{2} = 0 \]

12989

\[ {} a y y^{\prime \prime }+b {y^{\prime }}^{2}+\operatorname {c4} y^{4}+\operatorname {c3} y^{3}+\operatorname {c2} y^{2}+\operatorname {c1} y+\operatorname {c0} = 0 \]

12990

\[ {} a y y^{\prime \prime }+b {y^{\prime }}^{2}-\frac {y y^{\prime }}{\sqrt {c^{2}+x^{2}}} = 0 \]

12991

\[ {} \left (a y+b \right ) y^{\prime \prime }+c {y^{\prime }}^{2} = 0 \]

12992

\[ {} x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

12993

\[ {} f \left (x \right )+a y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

12994

\[ {} x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime }+x \left (d +a y^{4}\right )+y \left (c +b y^{2}\right ) = 0 \]

12995

\[ {} x y y^{\prime \prime }-x {y^{\prime }}^{2}+a y y^{\prime }+b x y^{3} = 0 \]

12996

\[ {} a y y^{\prime }+2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

12997

\[ {} x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

12998

\[ {} a y y^{\prime }-2 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

12999

\[ {} 4 y y^{\prime }-4 x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

13000

\[ {} x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13001

\[ {} x \left (x +y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-y = 0 \]

13002

\[ {} 2 x y y^{\prime \prime }-x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

13003

\[ {} x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \]

13004

\[ {} x^{2} \left (x +y\right ) y^{\prime \prime }-\left (x y^{\prime }-y\right )^{2} = 0 \]

13005

\[ {} x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (x y^{\prime }-y\right )^{2} = 0 \]

13006

\[ {} 2 x^{2} y y^{\prime \prime }-x^{2} \left (1+{y^{\prime }}^{2}\right )+y^{2} = 0 \]

13007

\[ {} a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

13008

\[ {} x \left (1+x \right )^{2} y y^{\prime \prime }-x \left (1+x \right )^{2} {y^{\prime }}^{2}+2 \left (1+x \right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

13009

\[ {} 8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

13011

\[ {} a x +y {y^{\prime }}^{2}+y^{2} y^{\prime \prime } = 0 \]

13012

\[ {} y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

13013

\[ {} \left (1-2 y\right ) {y^{\prime }}^{2}+\left (1+y^{2}\right ) y^{\prime \prime } = 0 \]

13014

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }-3 y {y^{\prime }}^{2} = 0 \]

13015

\[ {} \left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y y^{\prime }\right ) = 0 \]

13016

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-\left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13017

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime \prime }-2 \left (1+{y^{\prime }}^{2}\right ) \left (x y^{\prime }-y\right ) = 0 \]

13018

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+f \left (x \right ) \left (1-y\right ) y y^{\prime } = 0 \]

13019

\[ {} 2 \left (1-y\right ) y y^{\prime \prime }-\left (1-3 y\right ) {y^{\prime }}^{2}+h \left (y\right ) = 0 \]

13020

\[ {} 3 \left (1-y\right ) y y^{\prime \prime }-2 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]

13021

\[ {} \left (1-y\right ) y^{\prime \prime }-3 \left (1-2 y\right ) {y^{\prime }}^{2}-h \left (y\right ) = 0 \]