5.3.58 Problems 5701 to 5800

Table 5.161: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

16444

\[ {} 4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0 \]

16476

\[ {} y y^{\prime } x = x^{2}+x y+y^{2} \]

16484

\[ {} x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

16489

\[ {} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

16504

\[ {} y y^{\prime \prime } = -{y^{\prime }}^{2} \]

16506

\[ {} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

16507

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16509

\[ {} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16515

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16516

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16517

\[ {} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

16519

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

16520

\[ {} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

16525

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16526

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16527

\[ {} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

16538

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16539

\[ {} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

16540

\[ {} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime } \]

16542

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16543

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16545

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16546

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16547

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16548

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16549

\[ {} y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

16550

\[ {} y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

16551

\[ {} y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

16552

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

16555

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

16557

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

16558

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

16564

\[ {} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

16565

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

16568

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

16569

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0 \]

16577

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

16578

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

16582

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

16591

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

16805

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

16811

\[ {} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

16812

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

16813

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

16865

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

16870

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

16964

\[ {} y^{\prime \prime }+x y = \sin \left (x \right ) \]

16966

\[ {} y^{\prime \prime }-y^{2} = 0 \]

16977

\[ {} \sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

16981

\[ {} y^{\prime }+y \ln \left (x \right ) = 0 \]

16998

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

16999

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

17001

\[ {} \left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

17002

\[ {} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

17006

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

17013

\[ {} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

17039

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

17066

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

17069

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

17073

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

17074

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

17093

\[ {} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

17124

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

17138

\[ {} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

17148

\[ {} y^{\prime }+t^{2} = y^{2} \]

17149

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

17151

\[ {} y^{\prime } = y^{{1}/{5}} \]

17153

\[ {} y^{\prime } = 4 t^{2}-t y^{2} \]

17159

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17161

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17163

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17165

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17166

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17172

\[ {} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]

17187

\[ {} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

17190

\[ {} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

17199

\[ {} 3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

17206

\[ {} \frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

17211

\[ {} y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

17226

\[ {} y^{\prime } = \sqrt {\frac {y}{t}} \]

17239

\[ {} y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]

17289

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

17290

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17311

\[ {} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

17314

\[ {} \sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

17316

\[ {} t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

17317

\[ {} y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

17324

\[ {} 2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

17326

\[ {} 2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

17327

\[ {} 2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

17331

\[ {} 3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

17333

\[ {} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

17334

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

17335

\[ {} 2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

17337

\[ {} \frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

17344

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

17345

\[ {} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]

17346

\[ {} y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]

17347

\[ {} \cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]

17348

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]