| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime } x = x^{2}+x y+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = -{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -2 x {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime } = 4 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{4} = \sin \left (x \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime \prime }}^{2}+2 y = 2 x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+t^{2} = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+t^{2} = \frac {1}{y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = y^{{1}/{5}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 4 t^{2}-t y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {25-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {\frac {y}{t}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}\, \cos \left (t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|