5.3.69 Problems 6801 to 6900

Table 5.183: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

21813

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

21815

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{3} \]

21816

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right ) \]

21817

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }-y = -\ln \left (x \right ) \]

21836

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

21841

\[ {} [w^{\prime }\left (t \right )+y \left (t \right ) = \sin \left (t \right ), y^{\prime }\left (t \right )-z \left (t \right ) = {\mathrm e}^{t}, w \left (t \right )+y \left (t \right )+z^{\prime }\left (t \right ) = 1] \]

21845

\[ {} y^{\prime \prime }+4 y = 0 \]

21850

\[ {} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0 \]

21872

\[ {} 2 x^{4} y y^{\prime }+y^{4} = 4 x^{6} \]

21876

\[ {} y^{\prime } = x y^{\prime \prime }+{y^{\prime \prime }}^{2} \]

21877

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

21878

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

21879

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

21880

\[ {} y^{\prime \prime }-\frac {2 {y^{\prime }}^{2}}{y}-y = 0 \]

21881

\[ {} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

21883

\[ {} y = 2 x y^{\prime }-{y^{\prime }}^{2} \]

21884

\[ {} y = 2 x +y^{\prime }-\frac {{y^{\prime }}^{3}}{3} \]

21886

\[ {} x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0 \]

21887

\[ {} y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

21890

\[ {} y {y^{\prime }}^{2}-\left (x y+x +y^{2}\right ) y^{\prime }+x^{2}+x y = 0 \]

21895

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

21896

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = \sin \left (2 x \left (t \right )\right )-5 y \left (t \right )] \]

21897

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )] \]

21898

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{2}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21899

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21900

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )^{2}-x \left (t \right )^{2}] \]

21902

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )] \]

21903

\[ {} x^{\prime \prime } = 4 x^{3}-4 x \]

21904

\[ {} x^{\prime \prime }+\sin \left (x\right ) = 0 \]

21905

\[ {} x^{\prime \prime } = x^{2}-4 x+\lambda \]

21919

\[ {} {\mathrm e}^{x} \sec \left (y\right )+\left ({\mathrm e}^{x}+1\right ) \sec \left (y\right ) \tan \left (y\right ) y^{\prime } = 0 \]

21923

\[ {} y^{\prime } = \frac {y}{x}-\csc \left (\frac {y}{x}\right )^{2} \]

21927

\[ {} a x -b y+\left (b x -a y\right ) y^{\prime } = 0 \]

21928

\[ {} 2 x^{2}+5 x y^{2}+\left (5 x^{2} y-2 y^{4}\right ) y^{\prime } = 0 \]

21929

\[ {} x^{2} a +2 b x y+c y^{2}+\left (b \,x^{2}+2 c x y+y^{2}\right ) y^{\prime } = 0 \]

21934

\[ {} 2 x \sin \left (y\right )+2 x +3 y \cos \left (x \right )+\left (x^{2} \cos \left (y\right )+3 \sin \left (x \right )\right ) y^{\prime } = 0 \]

21935

\[ {} y \,{\mathrm e}^{2 x}-3 x \,{\mathrm e}^{2 y}+\left (\frac {{\mathrm e}^{2 x}}{2}-3 x^{2} {\mathrm e}^{2 y}-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

21940

\[ {} x y^{\prime }-y = x^{2} \sqrt {x^{2}-y^{2}} \]

21943

\[ {} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime } \]

21955

\[ {} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime } \]

21965

\[ {} 3 x^{2}-2 x y+\left (4 y^{3}-x^{2}\right ) y^{\prime } = 0 \]

21967

\[ {} 2 x -y+1+\left (x -2 y-1\right ) y^{\prime } = 0 \]

21969

\[ {} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0 \]

21974

\[ {} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2} = x +y \]

21975

\[ {} 2 a \,x^{3} y-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3} = 0 \]

21976

\[ {} y^{2}-2 y y^{\prime } x +x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3} = 0 \]

21978

\[ {} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right ) = 0 \]

22016

\[ {} 2 y^{\prime \prime \prime }+x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22017

\[ {} \left (2 x -1\right ) y^{\prime \prime }-3 y^{\prime } = 0 \]

22024

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

22041

\[ {} [x^{\prime \prime }\left (t \right ) = 1, x^{\prime }\left (t \right )+x \left (t \right )+y^{\prime \prime }\left (t \right )-9 y \left (t \right )+z^{\prime }\left (t \right )+z \left (t \right ) = 0, 5 x \left (t \right )+z^{\prime \prime }\left (t \right )-4 z \left (t \right ) = 2] \]

22043

\[ {} 2 x +\frac {1}{y}+\left (\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

22045

\[ {} \left (x^{3}+3\right ) y^{\prime }+2 x y+5 x^{2} = 0 \]

22066

\[ {} t y^{\prime \prime }+t^{2} y^{\prime }-\sin \left (t \right ) \sqrt {t} = t^{2}-t +1 \]

22067

\[ {} s^{2} t^{\prime \prime }+s t t^{\prime } = s \]

22068

\[ {} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p \]

22069

\[ {} y y^{\prime \prime } = 1+y^{2} \]

22070

\[ {} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0 \]

22071

\[ {} x^{4} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime } = {\mathrm e}^{x} \]

22073

\[ {} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0 \]

22074

\[ {} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0 \]

22075

\[ {} {y^{\prime \prime }}^{{3}/{2}}+y = x \]

22077

\[ {} {b^{\prime }}^{7} = 3 p \]

22085

\[ {} y^{\prime \prime }+4 y = 0 \]

22088

\[ {} y^{\prime } = \sin \left (x \right ) y+{\mathrm e}^{x} \]

22089

\[ {} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x} \]

22091

\[ {} y^{\prime } = x +y^{2} \]

22098

\[ {} 1+x y+y y^{\prime } = 0 \]

22134

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

22135

\[ {} y^{\prime } = \frac {y}{x +\sqrt {x y}} \]

22136

\[ {} y^{\prime } = \frac {y^{2}}{x y+\left (x y^{2}\right )^{{1}/{3}}} \]

22137

\[ {} y^{\prime } = \frac {x^{4}+3 x^{2} y^{2}+y^{4}}{x^{3} y} \]

22139

\[ {} x +\sin \left (y\right )+\left (x \cos \left (y\right )-2 y\right ) y^{\prime } = 0 \]

22141

\[ {} y^{\prime } = \frac {2+y \,{\mathrm e}^{x y}}{2 y-x \,{\mathrm e}^{x y}} \]

22144

\[ {} y+2 x y^{3}+\left (1+3 x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

22153

\[ {} y-x y^{2}+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

22171

\[ {} y^{2} x^{3}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

22193

\[ {} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

22194

\[ {} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2} \]

22197

\[ {} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0 \]

22198

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

22201

\[ {} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+2 y = x^{2}+x +1 \]

22202

\[ {} y^{\prime \prime }+2 x y^{\prime }+y = 4 x y^{2} \]

22204

\[ {} y y^{\prime }+y^{\prime \prime } = x^{2} \]

22205

\[ {} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y = 5 \sin \left (x \right ) \]

22206

\[ {} y^{\prime }-\frac {2 y}{x} = 0 \]

22271

\[ {} y^{\prime \prime }-\frac {y}{x} = x^{2} \]

22289

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

22294

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

22295

\[ {} x^{3} y^{\prime \prime }+x y = 0 \]

22297

\[ {} \left (1+x \right )^{3} y^{\prime \prime }+\left (x^{2}-1\right ) \left (1+x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

22305

\[ {} y^{\prime \prime }+x y = 2 \]

22306

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }+x y = x +2 \]

22307

\[ {} y^{\prime \prime }+\left (x -1\right ) y = {\mathrm e}^{x} \]

22313

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }+y = x \]

22314

\[ {} y^{\prime \prime }-\left (x -1\right ) y^{\prime } = x^{2}-2 x \]

22315

\[ {} y^{\prime \prime }-x y^{\prime } = {\mathrm e}^{-x} \]

22317

\[ {} y^{\prime \prime }-2 x y = x^{2} \]

22327

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

22336

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]