| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime }+y^{\prime } = {\mathrm e}^{t}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [w^{\prime }\left (t \right )+y \left (t \right ) = \sin \left (t \right ), y^{\prime }\left (t \right )-z \left (t \right ) = {\mathrm e}^{t}, w \left (t \right )+y \left (t \right )+z^{\prime }\left (t \right ) = 1]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [w^{\prime \prime }\left (t \right )-y \left (t \right )+2 z \left (t \right ) = 3 \,{\mathrm e}^{-t}, -2 w^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+z \left (t \right ) = 0, 2 w^{\prime }\left (t \right )-2 y \left (t \right )+z^{\prime }\left (t \right )+2 z^{\prime \prime }\left (t \right ) = 0]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [w^{\prime }\left (t \right )-y \left (t \right ) = 0, w \left (t \right )+y^{\prime }\left (t \right )+z \left (t \right ) = 1, w \left (t \right )-y \left (t \right )+z^{\prime }\left (t \right ) = 2 \sin \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [w^{\prime \prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = -1, w \left (t \right )+y^{\prime \prime }\left (t \right )-z \left (t \right ) = 0, -w \left (t \right )-y^{\prime }\left (t \right )+z^{\prime \prime }\left (t \right ) = 0]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2}+2 y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime }+x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {| y^{\prime }|}+1 = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {| y^{\prime }|}+{| y|} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -2 y}{y-2 x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y \csc \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+4 y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x {y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} U^{\prime } = \frac {U+1}{\sqrt {s}+\sqrt {s U}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y+\cos \left (\frac {y}{x}\right )^{2}}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {\sqrt {x^{2}+y^{2}}}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x +5 y}{2 x -y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3 x -y-9\right ) y^{\prime } = 10-2 x +2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 \sin \left (\frac {y}{x}\right ) x +2 x \tan \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )-y \sec \left (\frac {y}{x}\right )^{2}+\left (\cos \left (\frac {y}{x}\right ) x +x \sec \left (\frac {y}{x}\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = \arctan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x}{x +y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -y \cos \left (x \right )}{\sin \left (x \right )+y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{-x}-\sin \left (x \right )-\left ({\mathrm e}^{-x}+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+\frac {y}{x}+\left (\ln \left (x \right )+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y \left (y-{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-2 x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+2 y \,{\mathrm e}^{2 x}\right ) y^{\prime }+2 x y+2 y^{2} {\mathrm e}^{2 x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (4 x -y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {y}{\left (x +y\right )^{2}}-1+\left (1-\frac {x}{\left (x +y\right )^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} \cos \left (x \right )-y+\left (x +y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3}+2 y \,{\mathrm e}^{x}+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{2}+4 x^{2} y+\left (4 x y+3 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+\left (x y-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+\left (y^{3}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x \sqrt {x^{2}+y^{2}}+\left (x -y \sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-y^{4} x^{5}+\left (x -x^{4} y^{5}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}-x y^{2}+y+\left (y^{3}-x^{2} y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2}+x \sin \left (x \right )^{2}-\sin \left (2 x \right )-2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = -\frac {4}{y^{3}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }-\tan \left (y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = \tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3-x^{2} y\right ) y^{\prime } = x y^{2}+4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y^{2}+\left (2 x y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{\frac {y}{x}}+\frac {y}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \tan \left (x \right ) \sin \left (y\right )+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\sin \left (y\right )-x \right ) y^{\prime } = y+2 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-y = 2 x^{2} y^{2} y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{\prime } = {\mathrm e}^{t}-3 r
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {3 y+x}{x -3 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }+\frac {u^{\prime }}{r} = 4-4 r
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime \prime }+24 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+\left (3 y-2 x \right ) y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+2 y^{4}+\left (x^{3}+3 x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y^{2} = x^{2}+1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\left (1-x \right ) y^{\prime }-x y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} s^{\prime \prime }+16 s^{\prime }+64 s = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y = \sinh \left (x \right )^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x +3\right )^{2} y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }-2 y = 24 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2\right )^{2} y^{\prime \prime }-y = 4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (r^{2}+r \right ) R^{\prime \prime }+r R^{\prime }-n \left (n +1\right ) R = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+\left (3 \sin \left (x \right )^{2}-\cos \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{3} y = 0
\]
|
✓ |
✓ |
✗ |
|