4.1.36 Problems 3501 to 3600

Table 4.71: First order ode

#

ODE

Mathematica

Maple

Sympy

8170

\[ {} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

8171

\[ {} y^{2}-1+x y^{\prime } = 0 \]

8172

\[ {} 2 y^{\prime }+y = 0 \]

8173

\[ {} y^{\prime }+20 y = 24 \]

8176

\[ {} \left (y-x \right ) y^{\prime } = y-x \]

8177

\[ {} y^{\prime } = 25+y^{2} \]

8178

\[ {} y^{\prime } = 2 x y^{2} \]

8179

\[ {} 2 y^{\prime } = y^{3} \cos \left (x \right ) \]

8180

\[ {} x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

8181

\[ {} 2 x y+\left (-y+x^{2}\right ) y^{\prime } = 0 \]

8182

\[ {} p^{\prime } = p \left (1-p\right ) \]

8183

\[ {} y^{\prime }+4 x y = 8 x^{3} \]

8186

\[ {} x y^{\prime }-3 x y = 1 \]

8187

\[ {} 2 x y^{\prime }-y = 2 x \cos \left (x \right ) \]

8188

\[ {} x y+x^{2} y^{\prime } = 10 \sin \left (x \right ) \]

8189

\[ {} y^{\prime }+2 x y = 1 \]

8190

\[ {} -2 y+x y^{\prime } = 0 \]

8191

\[ {} y^{\prime } = -\frac {x}{y} \]

8192

\[ {} 2 y+y^{\prime } = 0 \]

8193

\[ {} 5 y^{\prime } = 2 y \]

8200

\[ {} 3 x y^{\prime }+5 y = 10 \]

8201

\[ {} y^{\prime } = y^{2}+2 y-3 \]

8202

\[ {} \left (y-1\right ) y^{\prime } = 1 \]

8204

\[ {} {y^{\prime }}^{2} = 4 y \]

8205

\[ {} {y^{\prime }}^{2} = 9-y^{2} \]

8206

\[ {} y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

8207

\[ {} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1 \]

8210

\[ {} y^{\prime } = \sqrt {1-y^{2}} \]

8212

\[ {} y^{\prime } = f \left (x \right ) \]

8214

\[ {} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0 \]

8215

\[ {} y^{\prime } = 5-y \]

8216

\[ {} y^{\prime } = 4+y^{2} \]

8219

\[ {} y^{\prime } = y-y^{2} \]

8220

\[ {} y^{\prime } = y-y^{2} \]

8221

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8222

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8223

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8224

\[ {} y^{\prime }+2 x y^{2} = 0 \]

8233

\[ {} y^{\prime } = 3 y^{{2}/{3}} \]

8234

\[ {} x y^{\prime } = 2 y \]

8235

\[ {} y^{\prime } = y^{{2}/{3}} \]

8236

\[ {} y^{\prime } = \sqrt {x y} \]

8237

\[ {} x y^{\prime } = y \]

8238

\[ {} y^{\prime }-y = x \]

8239

\[ {} \left (4-y^{2}\right ) y^{\prime } = x^{2} \]

8240

\[ {} \left (y^{3}+1\right ) y^{\prime } = x^{2} \]

8241

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime } = y^{2} \]

8242

\[ {} \left (y-x \right ) y^{\prime } = x +y \]

8243

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8244

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8245

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8246

\[ {} y^{\prime } = \sqrt {y^{2}-9} \]

8247

\[ {} x y^{\prime } = y \]

8248

\[ {} y^{\prime } = 1+y^{2} \]

8249

\[ {} y^{\prime } = y^{2} \]

8250

\[ {} y^{\prime } = y^{2} \]

8251

\[ {} y^{\prime } = y^{2} \]

8252

\[ {} y^{\prime } = y^{2} \]

8253

\[ {} y^{\prime } = y^{2} \]

8254

\[ {} y y^{\prime } = 3 x \]

8255

\[ {} y y^{\prime } = 3 x \]

8256

\[ {} y y^{\prime } = 3 x \]

8263

\[ {} y^{\prime } = x -2 y \]

8264

\[ {} y^{\prime } = x^{2}+y^{2} \]

8266

\[ {} 2 y+y^{\prime } = 3 x -6 \]

8267

\[ {} y^{\prime } = x \sqrt {y} \]

8268

\[ {} x y^{\prime } = 2 x \]

8269

\[ {} y^{\prime } = 2 \]

8270

\[ {} y^{\prime } = 2 y-4 \]

8271

\[ {} x y^{\prime } = y \]

8275

\[ {} y^{\prime } = y \left (y-3\right ) \]

8276

\[ {} 3 x y^{\prime }-2 y = 0 \]

8277

\[ {} \left (-2+2 y\right ) y^{\prime } = 2 x -1 \]

8278

\[ {} x y^{\prime }+y = 2 x \]

8279

\[ {} y^{\prime } = x^{2}+y^{2} \]

8280

\[ {} {y^{\prime }}^{2} = 4 x^{2} \]

8281

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

8286

\[ {} y^{\prime }+\sin \left (x \right ) y = x \]

8287

\[ {} y^{\prime }-2 x y = {\mathrm e}^{x} \]

8290

\[ {} x y^{\prime }+y = \frac {1}{y^{2}} \]

8291

\[ {} 1+{y^{\prime }}^{2} = \frac {1}{y^{2}} \]

8293

\[ {} \left (1-x y\right ) y^{\prime } = y^{2} \]

8295

\[ {} 2 y+y^{\prime } = 3 x \]

8300

\[ {} y^{\prime } = x^{2}-y^{2} \]

8301

\[ {} y^{\prime } = x^{2}-y^{2} \]

8302

\[ {} y^{\prime } = x^{2}-y^{2} \]

8303

\[ {} y^{\prime } = x^{2}-y^{2} \]

8304

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8305

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8306

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8307

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

8308

\[ {} y^{\prime } = 1-x y \]

8309

\[ {} y^{\prime } = 1-x y \]

8310

\[ {} y^{\prime } = 1-x y \]

8311

\[ {} y^{\prime } = 1-x y \]

8312

\[ {} y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]

8313

\[ {} y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]

8314

\[ {} y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]

8315

\[ {} y^{\prime } = \sin \left (x \right ) \cos \left (y\right ) \]

8316

\[ {} y^{\prime } = x \]