| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2}-1+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+20 y = 24
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 25+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime } = y^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \left (x-1\right ) \left (1-2 x\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+\left (-y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = p \left (1-p\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 x y = 8 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-3 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }-y = 2 x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x^{2} y^{\prime } = 10 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }+5 y = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}+2 y-3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-1\right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = 4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2} = 9-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+\sqrt {16-y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 5-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4-y^{2}\right ) y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{3}+1\right ) y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+y^{2}\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+y^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+y^{\prime } = 3 x -6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (y-3\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-2+2 y\right ) y^{\prime } = 2 x -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2} = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 6 \sqrt {y}+5 x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+\sin \left (x \right ) y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{y^{\prime }}^{2} = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-x y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|