| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} m y^{\prime \prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+b y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 2 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = -50 \sin \left (5 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 6 \cos \left (2 t \right )+8 \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+b y^{\prime }+k y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{10}+25 y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+z^{\prime }-z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-11 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 w^{\prime \prime }+20 w^{\prime }+25 w = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+11 y^{\prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-2 z^{\prime }-2 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{\prime \prime }-\omega ^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+42 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = 5 x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 2 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+10 y = 50 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 3 \sin \left (x \right )-4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{2} = -48 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 9 x^{2}+2 x -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x}
\]
|
✓ |
✓ |
✓ |
|