4.8.14 Problems 1301 to 1400

Table 4.821: Third and higher order ode

#

ODE

Mathematica

Maple

Sympy

17755

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

17756

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

17761

\[ {} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

17762

\[ {} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

17763

\[ {} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

17764

\[ {} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

17772

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

17773

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

17774

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = 0 \]

17775

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

17787

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

17788

\[ {} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

17789

\[ {} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

17790

\[ {} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

17791

\[ {} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

17792

\[ {} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

17859

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

17860

\[ {} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

17861

\[ {} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

17872

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

17873

\[ {} y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

17874

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

17875

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

18194

\[ {} x y^{\prime \prime \prime } = 2 \]

18202

\[ {} y^{\prime \prime \prime \prime } = x \]

18203

\[ {} y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

18214

\[ {} y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

18215

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

18225

\[ {} y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

18238

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

18241

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

18244

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

18246

\[ {} y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

18248

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

18249

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

18252

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]

18253

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }-6 y^{\prime }-4 y = 0 \]

18254

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

18255

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

18256

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

18257

\[ {} y^{\left (5\right )} = 0 \]

18258

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

18259

\[ {} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime } = 0 \]

18260

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

18277

\[ {} y^{\prime \prime \prime }+y = x \]

18278

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 1 \]

18279

\[ {} y^{\prime \prime \prime }+y^{\prime } = 2 \]

18280

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 3 \]

18281

\[ {} y^{\prime \prime \prime \prime }-y = 1 \]

18282

\[ {} y^{\prime \prime \prime \prime }-y^{\prime } = 2 \]

18283

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 \]

18284

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = 4 \]

18285

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 1 \]

18286

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{4 x} \]

18287

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{-x} \]

18288

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{-x} \]

18289

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

18290

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \cos \left (x \right ) \]

18291

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

18292

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = a \sin \left (n x +\alpha \right ) \]

18293

\[ {} y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

18294

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

18295

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{x} \]

18296

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x} \]

18300

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

18301

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

18302

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

18303

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

18304

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

18327

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

18328

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18330

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

18333

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

18334

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

18335

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \cos \left (2 x \right ) {\mathrm e}^{x} \]

18341

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

18342

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

18352

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = x \,{\mathrm e}^{x}+\frac {\cos \left (x \right )}{2} \]

18354

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

18370

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

18372

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

18373

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

18374

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

18375

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

18390

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

18391

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18392

\[ {} y^{\prime \prime \prime }-y = 2 x \]

18393

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

18410

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

18411

\[ {} x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

18412

\[ {} \left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

18413

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

18443

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

18480

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

18481

\[ {} y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

18483

\[ {} 2 y^{\prime \prime }+4 x y^{\prime \prime \prime }+x^{2} y^{\prime \prime \prime \prime } = 0 \]

18484

\[ {} 6 x y^{\prime \prime }+6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime } = 0 \]

19006

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 0 \]

19007

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

19021

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]