| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }-16 y^{\prime \prime }+12 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-4 y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{\prime \prime \prime \prime }-20 y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-64 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y a^{2} b^{2}+\left (a^{2}+b^{2}\right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-4 y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime \prime \prime }+2 s^{\prime \prime }-8 s = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = x +\sin \left (x \right )+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 3 x^{2}-4 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = x^{2} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y = \sinh \left (x \right )^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = x^{5}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y = 4 x +2+3 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x = 8 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = \frac {\ln \left (x \right )}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = \frac {24 x +24 y}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+2 x y^{\prime \prime }-x y^{\prime }-2 x y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 4 y^{\prime \prime \prime }-2 y^{\prime \prime }+6 y^{\prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime \prime }-4 i y^{\prime \prime }+\left (3+i\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+y^{\prime \prime }-7 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+5 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-2 x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4} y^{\prime \prime \prime \prime }-5 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-12 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{5} y^{\left (5\right )}-2 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 7 x^{4} y^{\prime \prime \prime \prime }-2 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{5} y^{\left (5\right )}+3 x^{3} y^{\prime \prime \prime }-9 x^{2} y^{\prime \prime }+18 x y^{\prime }-18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{6} y^{\left (6\right )}-12 x^{4} y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime \prime }-\frac {6 y}{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime \prime \prime }-x y^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime }-2 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 3 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|