4.8.19 Problems 1801 to 1900

Table 4.831: Third and higher order ode

#

ODE

Mathematica

Maple

Sympy

22757

\[ {} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }-16 y^{\prime \prime }+12 y^{\prime }+12 y = 0 \]

22761

\[ {} y^{\left (6\right )}-4 y^{\prime \prime \prime \prime } = 0 \]

22762

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

22763

\[ {} 4 y^{\prime \prime \prime \prime }-20 y^{\prime \prime }+25 y = 0 \]

22765

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

22774

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

22775

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-2 y = 0 \]

22779

\[ {} y^{\left (6\right )}-64 y = 0 \]

22780

\[ {} y a^{2} b^{2}+\left (a^{2}+b^{2}\right ) y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

22781

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

22782

\[ {} y^{\prime \prime \prime \prime }+4 y = 0 \]

22783

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+25 y = 0 \]

22785

\[ {} y^{\prime \prime \prime }-y = 0 \]

22786

\[ {} y^{\left (6\right )}-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

22787

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

22788

\[ {} s^{\prime \prime \prime \prime }+2 s^{\prime \prime }-8 s = 0 \]

22789

\[ {} y^{\prime \prime \prime }-y = 0 \]

22790

\[ {} y^{\left (5\right )}-y = 0 \]

22791

\[ {} y^{\prime \prime \prime }-4 y = 0 \]

22795

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

22796

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

22807

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

22819

\[ {} y^{\prime \prime \prime }+y^{\prime } = x +\sin \left (x \right )+\cos \left (x \right ) \]

22822

\[ {} y^{\prime \prime \prime \prime }-y = \cosh \left (x \right ) \]

22828

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 3 x^{2}-4 \,{\mathrm e}^{x} \]

22836

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = x^{2} {\mathrm e}^{3 x} \]

22840

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y = \sinh \left (x \right )^{4} \]

22852

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{x} \]

22853

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{-x} \]

22862

\[ {} y^{\prime \prime \prime }-y^{\prime } = x^{5}+1 \]

22864

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x} \]

22878

\[ {} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 1+x \]

22879

\[ {} -y+x y^{\prime }+x^{3} y^{\prime \prime \prime } = x \ln \left (x \right ) \]

22880

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 1 \]

22895

\[ {} y^{\prime \prime \prime }-4 y = 4 x +2+3 \,{\mathrm e}^{-2 x} \]

22897

\[ {} x^{\prime \prime \prime \prime }-x = 8 \,{\mathrm e}^{-t} \]

22900

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 1 \]

22901

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right ) \]

22904

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2} \]

22907

\[ {} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right ) \]

22909

\[ {} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x} \]

22910

\[ {} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t} \]

22911

\[ {} x^{2} y^{\prime \prime \prime }-x y^{\prime \prime }+y^{\prime } = \frac {\ln \left (x \right )}{x} \]

22912

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right ) \]

22915

\[ {} y^{\prime \prime \prime } = \frac {24 x +24 y}{x^{3}} \]

22916

\[ {} x y^{\prime \prime \prime }+2 x y^{\prime \prime }-x y^{\prime }-2 x y = 1 \]

22930

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t} \]

22931

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (t \right ) \]

23223

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

23230

\[ {} y^{\prime \prime \prime } = 0 \]

23343

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 0 \]

23347

\[ {} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{x} = 0 \]

23348

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

23356

\[ {} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x} \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]

23359

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3 \]

23362

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

23367

\[ {} y^{\prime \prime \prime } = 2 \]

23371

\[ {} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1 \]

23375

\[ {} y^{\prime \prime \prime } = 0 \]

23376

\[ {} y^{\prime \prime \prime } = x^{3} \]

23379

\[ {} y^{\prime \prime \prime \prime } = 0 \]

23380

\[ {} y^{\prime \prime \prime } = x^{2} \]

23381

\[ {} y^{\left (5\right )} = 0 \]

23391

\[ {} y^{\prime \prime \prime }+y^{\prime } = 0 \]

23407

\[ {} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0 \]

23419

\[ {} 4 y^{\prime \prime \prime }-2 y^{\prime \prime }+6 y^{\prime }-7 y = 0 \]

23420

\[ {} 2 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-y = 0 \]

23421

\[ {} y^{\prime \prime \prime }-y^{\prime }+2 y = 0 \]

23423

\[ {} 5 y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

23424

\[ {} 6 y^{\prime \prime \prime }-4 i y^{\prime \prime }+\left (3+i\right ) y^{\prime }-2 y = 0 \]

23425

\[ {} 3 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

23426

\[ {} 6 y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+y^{\prime \prime }-7 y^{\prime }-6 y = 0 \]

23427

\[ {} 3 y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

23428

\[ {} 2 y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

23448

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

23456

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

23457

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

23458

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

23464

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

23465

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

23466

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

23468

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

23492

\[ {} 2 y-2 x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23497

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23502

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23503

\[ {} 3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

23504

\[ {} x^{4} y^{\prime \prime \prime \prime }-5 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23505

\[ {} 2 x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

23506

\[ {} 2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-12 x y^{\prime }-2 y = 0 \]

23507

\[ {} x^{5} y^{\left (5\right )}-2 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime } = 0 \]

23508

\[ {} 7 x^{4} y^{\prime \prime \prime \prime }-2 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23509

\[ {} x^{5} y^{\left (5\right )}+3 x^{3} y^{\prime \prime \prime }-9 x^{2} y^{\prime \prime }+18 x y^{\prime }-18 y = 0 \]

23510

\[ {} x^{6} y^{\left (6\right )}-12 x^{4} y^{\prime \prime \prime \prime } = 0 \]

23511

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

23513

\[ {} x y^{\prime \prime \prime }-\frac {6 y}{x^{2}} = 0 \]

23514

\[ {} x^{2} y^{\prime \prime \prime \prime }-x y^{\prime \prime \prime } = 0 \]

23548

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 0 \]

23575

\[ {} y^{\prime \prime \prime }+y^{\prime }-2 y = x^{3} \]

23579

\[ {} y^{\prime \prime \prime }-y = 3 \ln \left (x \right ) \]