6.64 Problems 6301 to 6400

Table 6.127: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6301

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

6302

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

6303

\[ {}x y^{\prime }+2 y = \frac {1}{x^{3}} \]

6304

\[ {}t +y+1-y^{\prime } = 0 \]

6305

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

6306

\[ {}y x^{\prime }+2 x = 5 y^{3} \]

6307

\[ {}x y^{\prime }+3 x^{2}+3 y = \frac {\sin \left (x \right )}{x} \]

6308

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

6309

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (1+x \right ) \sqrt {-x^{2}+1} \]

6310

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]

6311

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]

6312

\[ {}t^{2} x^{\prime }+3 t x = t^{4} \ln \left (t \right )+1 \]

6313

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]

6314

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 2 x \cos \left (x \right )^{2} \]

6315

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \sin \left (x \right ) \]

6316

\[ {}y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x \]

6317

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

6318

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

6319

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

6320

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

6322

\[ {}x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0 \]

6323

\[ {}x^{{10}/{3}}-2 y+x y^{\prime } = 0 \]

6324

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

6325

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

6326

\[ {}y^{\prime }+x y = 0 \]

6327

\[ {}y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0 \]

6328

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

6329

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

6330

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

6331

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

6332

\[ {}\cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0 \]

6333

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

6334

\[ {}\frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0 \]

6335

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

6336

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

6337

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

6338

\[ {}2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

6339

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \]

6340

\[ {}y^{\prime }-4 y = 32 x^{2} \]

6341

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

6342

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

6343

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

6344

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

6345

\[ {}\left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

6346

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

6347

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

6348

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

6349

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

6350

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

6351

\[ {}\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

6352

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

6353

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

6354

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

6355

\[ {}y^{\prime }-y = 0 \]

6356

\[ {}z^{\prime }-x^{2} z = 0 \]

6357

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

6358

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

6359

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6360

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

6361

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6362

\[ {}\left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

6363

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

6364

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

6365

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

6366

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

6367

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

6368

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

6369

\[ {}y^{\prime }-2 x y = 0 \]

6370

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

6371

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

6372

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

6373

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

6374

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]

6375

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

6376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

6377

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

6378

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]

6379

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

6380

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

6381

\[ {}z^{\prime \prime }+z^{\prime } x +z = x^{2}+2 x +1 \]

6382

\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

6383

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \left (x \right ) \]

6384

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \left (x \right ) \]

6385

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

6386

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

6387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

6388

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

6389

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

6390

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]

6391

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

6392

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

6393

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

6394

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]

6395

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

6396

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

6397

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]

6398

\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \]

6399

\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \]

6400

\[ {}y^{\prime }+y = \left (1+x \right )^{2} \]