6.72 Problems 7101 to 7200

Table 6.143: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

7101

\[ {}y^{\prime } = y^{2}-4 \]

7102

\[ {}y^{\prime } = y^{2}-4 \]

7103

\[ {}y^{\prime } = y^{2}-4 \]

7104

\[ {}x y^{\prime } = y^{2}-y \]

7105

\[ {}x y^{\prime } = y^{2}-y \]

7106

\[ {}x y^{\prime } = y^{2}-y \]

7107

\[ {}x y^{\prime } = y^{2}-y \]

7108

\[ {}2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime } = 0 \]

7109

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

7110

\[ {}y^{\prime } = \left (y-1\right )^{2} \]

7111

\[ {}y^{\prime } = \left (y-1\right )^{2}+\frac {1}{100} \]

7112

\[ {}y^{\prime } = \left (y-1\right )^{2}-\frac {1}{100} \]

7113

\[ {}y^{\prime } = y-y^{3} \]

7114

\[ {}y^{\prime } = y-y^{3} \]

7115

\[ {}y^{\prime } = y-y^{3} \]

7116

\[ {}y^{\prime } = y-y^{3} \]

7117

\[ {}y^{\prime } = \frac {1}{-3+y} \]

7118

\[ {}y^{\prime } = \frac {1}{-3+y} \]

7119

\[ {}y^{\prime } = \frac {1}{-3+y} \]

7120

\[ {}y^{\prime } = \frac {1}{-3+y} \]

7121

\[ {}y^{\prime } = \frac {1}{\sin \left (x \right )+1} \]

7122

\[ {}y^{\prime } = \frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \]

7123

\[ {}\left (\sqrt {x}+x \right ) y^{\prime } = \sqrt {y}+y \]

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

7125

\[ {}y^{\prime } = \frac {{\mathrm e}^{\sqrt {x}}}{y} \]

7126

\[ {}y^{\prime } = \frac {x \arctan \left (x \right )}{y} \]

7127

\[ {}y^{\prime } = -\frac {x}{y} \]

7128

\[ {}y^{\prime } = x \sqrt {y} \]

7129

\[ {}y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]

7130

\[ {}y^{\prime } = y \]

7131

\[ {}y^{\prime } = y+\frac {y}{x \ln \left (x \right )} \]

7132

\[ {}y^{2}+{y^{\prime }}^{2} = 1 \]

7133

\[ {}y^{\prime } = \sqrt {\frac {1-y^{2}}{-x^{2}+1}} \]

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]

7137

\[ {}1+{x^{\prime }}^{2} = \frac {a}{y} \]

7138

\[ {}y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

7139

\[ {}y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

7140

\[ {}y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

7141

\[ {}y^{\prime } = -\frac {5+8 x}{3 y^{2}+1} \]

7142

\[ {}\left (2 y+2\right ) y^{\prime }-4 x^{3}-6 x = 0 \]

7143

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]

7144

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]

7145

\[ {}y^{\prime } = 5 y \]

7146

\[ {}y^{\prime }+2 y = 0 \]

7147

\[ {}y^{\prime }+y = {\mathrm e}^{3 x} \]

7148

\[ {}3 y^{\prime }+12 y = 4 \]

7149

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]

7150

\[ {}y^{\prime }+2 x y = x^{3} \]

7151

\[ {}x^{2} y^{\prime }+x y = 1 \]

7152

\[ {}y^{\prime } = 2 y+x^{2}+5 \]

7153

\[ {}x y^{\prime }-y = x^{2} \sin \left (x \right ) \]

7154

\[ {}x y^{\prime }+2 y = 3 \]

7155

\[ {}x y^{\prime }+4 y = x^{3}-x \]

7156

\[ {}\left (1+x \right ) y^{\prime }-x y = x^{2}+x \]

7157

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = {\mathrm e}^{x} \]

7158

\[ {}x y^{\prime }+\left (1+x \right ) y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

7159

\[ {}y-4 \left (x +y^{6}\right ) y^{\prime } = 0 \]

7160

\[ {}y = \left (y \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

7161

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]

7162

\[ {}\cos \left (x \right )^{2} \sin \left (x \right ) y^{\prime }+y \cos \left (x \right )^{3} = 1 \]

7163

\[ {}\left (1+x \right ) y^{\prime }+\left (x +2\right ) y = 2 x \,{\mathrm e}^{-x} \]

7164

\[ {}\left (x +2\right )^{2} y^{\prime } = 5-8 y-4 x y \]

7165

\[ {}r^{\prime }+r \sec \left (t \right ) = \cos \left (t \right ) \]

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

7167

\[ {}x y^{\prime }+\left (1+3 x \right ) y = {\mathrm e}^{-3 x} \]

7168

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y = \left (1+x \right )^{2} \]

7169

\[ {}y^{\prime } = x +5 y \]

7170

\[ {}y^{\prime } = 2 x -3 y \]

7171

\[ {}x y^{\prime }+y = {\mathrm e}^{x} \]

7172

\[ {}y y^{\prime }-x = 2 y^{2} \]

7173

\[ {}L i^{\prime }+R i = E \]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]

7175

\[ {}x y^{\prime }+y = 4 x +1 \]

7176

\[ {}y^{\prime }+4 x y = x^{3} {\mathrm e}^{x^{2}} \]

7177

\[ {}\left (1+x \right ) y^{\prime }+y = \ln \left (x \right ) \]

7178

\[ {}x \left (1+x \right ) y^{\prime }+x y = 1 \]

7179

\[ {}y^{\prime }-y \sin \left (x \right ) = 2 \sin \left (x \right ) \]

7180

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right )^{2} \]

7181

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le x \le 3 \\ 0 & 3<x \end {array}\right . \]

7182

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right . \]

7183

\[ {}y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]

7184

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ -x & 1\le x \end {array}\right . \]

7185

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y = 4 x \]

7186

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 1 & 0\le x \le 2 \\ 5 & 2<x \end {array}\right .\right ) y = 0 \]

7187

\[ {}y^{\prime }-2 x y = 1 \]

7188

\[ {}y^{\prime }-2 x y = -1 \]

7189

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 1 \]

7190

\[ {}x^{2} y^{\prime }-y = x^{3} \]

7191

\[ {}x^{3} y^{\prime }+2 x^{2} y = 10 \sin \left (x \right ) \]

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]

7193

\[ {}1 = \left (y^{2}+x \right ) y^{\prime } \]

7194

\[ {}y+\left (2 x +x y-3\right ) y^{\prime } = 0 \]

7195

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7196

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7197

\[ {}x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7198

\[ {}[x^{\prime }\left (t \right ) = -\lambda _{1} x \left (t \right ), y^{\prime }\left (t \right ) = \lambda _{1} x \left (t \right )-\lambda _{2} y \left (t \right )] \]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]