6.79 Problems 7801 to 7900

Table 6.157: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

7801

\[ {} x \left (x^{2}-4\right ) y^{\prime } = 1 \]

7802

\[ {} \left (1+x \right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]

7803

\[ {} y^{\prime } = 2 x y+1 \]

7804

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

7805

\[ {} y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

7806

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

7807

\[ {} x^{5} y^{\prime }+y^{5} = 0 \]

7808

\[ {} y^{\prime } = 4 x y \]

7809

\[ {} y^{\prime }+\tan \left (x \right ) y = 0 \]

7810

\[ {} \left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

7811

\[ {} y \ln \left (y\right )-x y^{\prime } = 0 \]

7812

\[ {} x y^{\prime } = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

7813

\[ {} y^{\prime } \sin \left (y\right ) = x^{2} \]

7814

\[ {} y^{\prime }-\tan \left (x \right ) y = 0 \]

7815

\[ {} x y y^{\prime } = -1+y \]

7816

\[ {} x y^{2}-x^{2} y^{\prime } = 0 \]

7817

\[ {} y y^{\prime } = 1+x \]

7818

\[ {} x^{2} y^{\prime } = y \]

7819

\[ {} \frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]

7820

\[ {} y^{2} y^{\prime } = x +2 \]

7821

\[ {} y^{\prime } = x^{2} y^{2} \]

7822

\[ {} y^{\prime } \left (y+1\right ) = -x^{2}+1 \]

7823

\[ {} \frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

7824

\[ {} y^{\prime \prime } y^{\prime } = x \left (1+x \right ) \]

7825

\[ {} y^{\prime }-x y = 0 \]

7826

\[ {} y^{\prime }+x y = x \]

7827

\[ {} y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

7828

\[ {} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

7829

\[ {} 2 y-x^{3} = x y^{\prime } \]

7830

\[ {} y^{\prime }+2 x y = 0 \]

7831

\[ {} x y^{\prime }-3 y = x^{4} \]

7832

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

7833

\[ {} y^{\prime }+\cot \left (x \right ) y = 2 x \csc \left (x \right ) \]

7834

\[ {} y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

7835

\[ {} y^{\prime }-x y = 0 \]

7836

\[ {} y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

7837

\[ {} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

7838

\[ {} y^{\prime }-\frac {y}{x} = x^{2} \]

7839

\[ {} y^{\prime }+4 y = {\mathrm e}^{-x} \]

7840

\[ {} x^{2} y^{\prime }+x y = 2 x \]

7841

\[ {} x y^{\prime }+y = x^{4} y^{3} \]

7842

\[ {} x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

7843

\[ {} x y^{\prime }+y = x y^{2} \]

7844

\[ {} y^{\prime }+x y = y^{4} x \]

7845

\[ {} \left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

7846

\[ {} y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

7847

\[ {} x y^{\prime }+2 = x^{3} \left (-1+y\right ) y^{\prime } \]

7848

\[ {} x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \]

7849

\[ {} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

7850

\[ {} \left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

7851

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

7852

\[ {} y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

7853

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

7854

\[ {} y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

7855

\[ {} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

7856

\[ {} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

7857

\[ {} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

7858

\[ {} 1+y+\left (1-x \right ) y^{\prime } = 0 \]

7859

\[ {} 2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

7860

\[ {} \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

7861

\[ {} 2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

7862

\[ {} \frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

7863

\[ {} 2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

7864

\[ {} x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

7865

\[ {} {\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

7866

\[ {} 1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

7867

\[ {} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

7868

\[ {} 3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

7869

\[ {} \frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

7870

\[ {} \frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

7871

\[ {} x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

7872

\[ {} x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

7873

\[ {} x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

7874

\[ {} x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

7875

\[ {} x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

7876

\[ {} x -y-\left (x +y\right ) y^{\prime } = 0 \]

7877

\[ {} x y^{\prime } = 2 x -6 y \]

7878

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

7879

\[ {} x^{2} y^{\prime } = 2 x y+y^{2} \]

7880

\[ {} x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

7881

\[ {} y^{\prime } = \frac {x +y+4}{x -y-6} \]

7882

\[ {} y^{\prime } = \frac {x +y+4}{x +y-6} \]

7883

\[ {} 2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

7884

\[ {} y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

7885

\[ {} 2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \]

7886

\[ {} y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

7887

\[ {} y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

7888

\[ {} y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

7889

\[ {} y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

7890

\[ {} {\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

7891

\[ {} y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

7892

\[ {} y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

7893

\[ {} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

7894

\[ {} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7895

\[ {} x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

7896

\[ {} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

7897

\[ {} \left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

7898

\[ {} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

7899

\[ {} x +3 y^{2}+2 x y y^{\prime } = 0 \]

7900

\[ {} y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]