6.82 Problems 8101 to 8200

Table 6.163: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

8101

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

8102

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

8103

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

8104

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

8105

\[ {}y^{\prime \prime }+\left (p +\frac {1}{2}-\frac {x^{2}}{4}\right ) y = 0 \]

8106

\[ {}y^{\prime \prime }+x y = 0 \]

8107

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

8108

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 p y = 0 \]

8109

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

8110

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

8111

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

8112

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

8113

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8114

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8115

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8116

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8117

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8118

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

8119

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

8120

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x y = 0 \]

8121

\[ {}x^{3} y^{\prime \prime }-4 x^{2} y^{\prime }+3 x y = 0 \]

8122

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+y = 0 \]

8123

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

8124

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

8125

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

8126

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

8127

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

8128

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8129

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

8130

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

8131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8132

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

8133

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

8134

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

8135

\[ {}3 \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

8136

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8137

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

8139

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

8140

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

8141

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]

8142

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

8143

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

8144

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

8145

\[ {}y^{\prime \prime }-x y^{\prime }+y = x \]

8146

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

8147

\[ {}2 y^{\prime \prime }+x y^{\prime }+y = 0 \]

8148

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

8149

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8150

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-x y = 0 \]

8151

\[ {}\left (x -1\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

8152

\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-x y^{\prime }+\left (x +2\right ) y = 0 \]

8153

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \]

8154

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

8155

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

8156

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

8157

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0 \]

8158

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

8159

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 0 \]

8160

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

8161

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0 \]

8162

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

8163

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8164

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

8165

\[ {}9 \left (x -2\right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (x -2\right ) y^{\prime }+16 y = 0 \]

8166

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

8167

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]

8168

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]

8169

\[ {}y^{\prime \prime }-y = t^{2} \]

8170

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]

8171

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]

8172

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]

8173

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]

8174

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{-t +\pi } \]

8175

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]

8176

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

8178

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

8179

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

8180

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8182

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

8183

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

8184

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

8185

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+t -1, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )-5 t -2] \]

8186

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

8187

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

8188

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

8189

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

8190

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

8191

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

8192

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

8193

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

8194

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )] \]

8195

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \]

8196

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-5 t +2, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )-8 t -8] \]

8197

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

8198

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )] \]

8199

\[ {}\left [x^{\prime }\left (t \right ) = -3 x \left (t \right )+\sqrt {2}\, y \left (t \right ), y^{\prime }\left (t \right ) = \sqrt {2}\, x \left (t \right )-2 y \left (t \right )\right ] \]

8200

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-4 y \left (t \right )] \]