6.83 Problems 8201 to 8300

Table 6.165: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

8201

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

8202

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

8203

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

8204

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right )] \]

8205

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+z \left (t \right )] \]

8206

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )-4 z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

8207

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-4 t +1, y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )+3 t +4] \]

8208

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-t +3, y^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )+t -2] \]

8209

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+y \left (t \right )-t +3, y^{\prime }\left (t \right ) = -x \left (t \right )-5 y \left (t \right )+t +1] \]

8210

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

8211

\[ {}[x^{\prime }\left (t \right ) = t y \left (t \right )+1, y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )] \]

8212

\[ {}y^{\prime } = y^{2}-x \]

8213

\[ {}y^{\prime } = y^{2}-x \]

8214

\[ {}y^{\prime }-2 y = x^{2} \]

8215

\[ {}y^{\prime }-2 y = x^{2} \]

8216

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]

8217

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]

8218

\[ {}y^{\prime \prime }+y = 0 \]

8219

\[ {}y^{\prime \prime }+y = 0 \]

8220

\[ {}y^{\prime \prime }-y = 0 \]

8221

\[ {}y^{\prime \prime }-y = 0 \]

8222

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

8224

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

8226

\[ {}y^{\prime \prime }-x y = 0 \]

8227

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

8228

\[ {}y^{\prime \prime }-2 x y^{\prime }+y = 0 \]

8229

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

8230

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

8231

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

8232

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

8233

\[ {}\left (x +2\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

8234

\[ {}y^{\prime \prime }-\left (1+x \right ) y^{\prime }-y = 0 \]

8235

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

8236

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

8237

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

8238

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8239

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]

8240

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

8241

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

8242

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8243

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

8244

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

8245

\[ {}\cos \left (x \right ) y^{\prime \prime }+y^{\prime }+5 y = 0 \]

8246

\[ {}y^{\prime \prime }-x y = 1 \]

8247

\[ {}y^{\prime \prime }-4 x y^{\prime }-4 y = {\mathrm e}^{x} \]

8248

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8249

\[ {}y^{\prime \prime }+5 x y^{\prime }+\sqrt {x}\, y = 0 \]

8250

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

8251

\[ {}y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

8252

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

8253

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

8254

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

8255

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

8256

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

8257

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0 \]

8258

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

8259

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

8260

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8261

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-\left (1+x \right ) y = 0 \]

8262

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (1+x \right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

8263

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

8264

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

8265

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

8266

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

8267

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

8268

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

8269

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8270

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

8271

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

8272

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

8273

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

8274

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

8275

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

8276

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

8277

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8278

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

8279

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

8280

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

8281

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

8282

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

8283

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

8284

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{t}+\lambda y = 0 \]

8285

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

8286

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8287

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

8288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8289

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

8290

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

8291

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8292

\[ {}y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

8293

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

8294

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

8295

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

8296

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

8297

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8298

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

8299

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

8300

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]