6.190 Problems 18901 to 19000

Table 6.379: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18901

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right ) \]

18902

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = x \]

18903

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right ) \]

18904

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

18905

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

18906

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

18907

\[ {}y^{\prime \prime }+n^{2} y = x^{4} {\mathrm e}^{x} \]

18908

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = x^{4} \]

18909

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \]

18910

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

18911

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

18912

\[ {}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

18913

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

18914

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x} \]

18915

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} x^{2} \]

18916

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x} \]

18917

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

18918

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

18919

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

18920

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

18921

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

18922

\[ {}y^{\prime \prime \prime }+y = \sin \left (x \right ) {\mathrm e}^{2 x}+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18923

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

18924

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

18925

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18926

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18927

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

18928

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

18929

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

18930

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

18931

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

18933

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

18934

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

18935

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

18936

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

18937

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

18938

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 c +\frac {10}{x} \]

18939

\[ {}16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3 \]

18940

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

18941

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

18942

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

18943

\[ {}x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1 \]

18944

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

18945

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

18946

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

18947

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

18948

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

18949

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

18950

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

18951

\[ {}\sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

18952

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2} \]

18953

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

18954

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

18955

\[ {}x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

18958

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

18959

\[ {}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

18960

\[ {}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

18961

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

18962

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18963

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

18964

\[ {}2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18966

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18967

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18969

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18970

\[ {}y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

18971

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18972

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

18973

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18975

\[ {}y^{\prime \prime \prime } y^{\prime \prime } = 2 \]

18976

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

18977

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

18978

\[ {}y^{\prime \prime }+y = 0 \]

18979

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

18980

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

18981

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

18982

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

18984

\[ {}\left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (3+6 x \right ) y^{\prime \prime }+6 y = 0 \]

18985

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

18986

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

18987

\[ {}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18988

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

18991

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

18992

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

18994

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

18995

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

18997

\[ {}y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = \sin \left (2 x \right ) \]

18998

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

19000

\[ {}y^{3} y^{\prime \prime } = a \]