6.15 Problems 1401 to 1500

Table 6.29: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

1401

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1402

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1403

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

1404

\[ {}\left [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-\frac {5 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = \frac {9 x_{1} \left (t \right )}{5}-x_{2} \left (t \right )\right ] \]

1405

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

1406

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1407

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+2 x_{2} \left (t \right )+x_{3} \left (t \right )] \]

1408

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1409

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

1410

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1411

\[ {}\left [x_{1}^{\prime }\left (t \right ) = \frac {3 x_{1} \left (t \right )}{4}-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-\frac {5 x_{2} \left (t \right )}{4}\right ] \]

1412

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {4 x_{1} \left (t \right )}{5}+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+\frac {6 x_{2} \left (t \right )}{5}\right ] \]

1413

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{4}+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-\frac {x_{2} \left (t \right )}{4}, x_{3}^{\prime }\left (t \right ) = -\frac {x_{3} \left (t \right )}{4}\right ] \]

1414

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{4}+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-\frac {x_{2} \left (t \right )}{4}, x_{3}^{\prime }\left (t \right ) = \frac {x_{3} \left (t \right )}{10}\right ] \]

1415

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{2}-\frac {x_{2} \left (t \right )}{8}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-\frac {x_{2} \left (t \right )}{2}\right ] \]

1416

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1417

\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 8 x_{1} \left (t \right )-4 x_{2} \left (t \right )] \]

1418

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {3 x_{1} \left (t \right )}{2}+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{4}-\frac {x_{2} \left (t \right )}{2}\right ] \]

1419

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+\frac {5 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = -\frac {5 x_{1} \left (t \right )}{2}+2 x_{2} \left (t \right )\right ] \]

1420

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{2} \left (t \right )+x_{3} \left (t \right )] \]

1421

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )] \]

1422

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-7 x_{2} \left (t \right )] \]

1423

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {5 x_{1} \left (t \right )}{2}+\frac {3 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = -\frac {3 x_{1} \left (t \right )}{2}+\frac {x_{2} \left (t \right )}{2}\right ] \]

1424

\[ {}\left [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+\frac {3 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = -\frac {3 x_{1} \left (t \right )}{2}-x_{2} \left (t \right )\right ] \]

1425

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+9 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

1426

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+6 x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

1427

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {5 x_{1} \left (t \right )}{2}+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-\frac {5 x_{2} \left (t \right )}{2}+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-\frac {5 x_{3} \left (t \right )}{2}\right ] \]

1428

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )+t] \]

1429

\[ {}\left [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+\sqrt {3}\, x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = \sqrt {3}\, x_{1} \left (t \right )-x_{2} \left (t \right )+\sqrt {3}\, {\mathrm e}^{-t}\right ] \]

1430

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )-\cos \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\sin \left (t \right )] \]

1431

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+{\mathrm e}^{-2 t}, x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )-2 \,{\mathrm e}^{t}] \]

1432

\[ {}\left [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-2 x_{2} \left (t \right )+\frac {1}{t^{3}}, x_{2}^{\prime }\left (t \right ) = 8 x_{1} \left (t \right )-4 x_{2} \left (t \right )-\frac {1}{t^{2}}\right ] \]

1433

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+2 x_{2} \left (t \right )+\frac {1}{t}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+\frac {2}{t}+4\right ] \]

1434

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right )-{\mathrm e}^{t}] \]

1435

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )-{\mathrm e}^{t}] \]

1436

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {5 x_{1} \left (t \right )}{4}+\frac {3 x_{2} \left (t \right )}{4}+2 t, x_{2}^{\prime }\left (t \right ) = \frac {3 x_{1} \left (t \right )}{4}-\frac {5 x_{2} \left (t \right )}{4}+{\mathrm e}^{t}\right ] \]

1437

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+\sqrt {2}\, x_{2} \left (t \right )+{\mathrm e}^{-t}, x_{2}^{\prime }\left (t \right ) = \sqrt {2}\, x_{1} \left (t \right )-2 x_{2} \left (t \right )-{\mathrm e}^{-t}\right ] \]

1438

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\cos \left (t \right )] \]

1439

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right )+\csc \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+\sec \left (t \right )] \]

1440

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -\frac {x_{1} \left (t \right )}{2}-\frac {x_{2} \left (t \right )}{8}+\frac {{\mathrm e}^{-\frac {t}{2}}}{2}, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-\frac {x_{2} \left (t \right )}{2}\right ] \]

1441

\[ {}[x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+3 t] \]

1442

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

1443

\[ {}[x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

1444

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

1445

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-7 x_{2} \left (t \right )] \]

1446

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

1447

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

1448

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1449

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {5 x_{2} \left (t \right )}{2}\right ] \]

1450

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1451

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )] \]

1452

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{2} \left (t \right )] \]

1453

\[ {}\left [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-\frac {5 x_{2} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = \frac {9 x_{1} \left (t \right )}{5}-x_{2} \left (t \right )\right ] \]

1454

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-2, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )] \]

1455

\[ {}[x_{1}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )-2, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )+1] \]

1456

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )-1, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+5] \]

1457

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

1458

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

1459

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

1460

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

1461

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

1462

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y = t \]

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

1464

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = 0 \]

1465

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 0 \]

1466

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime } = 0 \]

1467

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

1468

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-3 y = 0 \]

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

1470

\[ {}\left (2-t \right ) y^{\prime \prime \prime }+\left (2 t -3\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

1471

\[ {}t^{2} \left (3+t \right ) y^{\prime \prime \prime }-3 t \left (2+t \right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0 \]

1472

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

1473

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

1474

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 0 \]

1475

\[ {}y^{\left (6\right )}+y = 0 \]

1476

\[ {}y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

1477

\[ {}y^{\left (6\right )}-y^{\prime \prime } = 0 \]

1478

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

1479

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

1480

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

1481

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

1482

\[ {}y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+6 y^{\prime \prime }+30 y^{\prime }-36 y = 0 \]

1483

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

1484

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

1485

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1486

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

1487

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

1488

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

1489

\[ {}y^{\prime \prime \prime \prime }-4 y = 0 \]

1490

\[ {}y^{\prime \prime }+\omega ^{2} y = \cos \left (2 t \right ) \]

1491

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

1492

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t <\infty \end {array}\right . \]

1493

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t <\infty \end {array}\right . \]

1494

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t <\infty \end {array}\right . \]

1495

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <3 \pi \\ 0 & 3 \pi \le t <\infty \end {array}\right . \]

1496

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & \pi \le t <2 \pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]

1497

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

1498

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & \operatorname {otherwise} \end {array}\right . \]

1499

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

1500

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \operatorname {otherwise} \end {array}\right . \]