5.3.42 Problems 4101 to 4200

Table 5.367: Second order ode

#

ODE

Mathematica

Maple

13156

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

13157

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

13158

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

13159

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

13160

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

13161

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

13162

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

13163

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

13164

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

13165

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13166

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13167

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

13168

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

13170

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

13171

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

13172

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

13173

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

13174

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

13175

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

13176

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

13186

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

13187

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

13188

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]

13189

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

13190

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]

13191

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

13192

\[ {}x^{\prime \prime }-2 x = 1 \]

13194

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]

13197

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]

13198

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]

13199

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]

13201

\[ {}x^{\prime \prime }-x = \delta \left (t -5\right ) \]

13202

\[ {}x^{\prime \prime }+x = \delta \left (t -2\right ) \]

13203

\[ {}x^{\prime \prime }+4 x = \delta \left (t -2\right )-\delta \left (t -5\right ) \]

13204

\[ {}x^{\prime \prime }+x = 3 \delta \left (t -2 \pi \right ) \]

13205

\[ {}y^{\prime \prime }+y^{\prime }+y = \delta \left (t -1\right ) \]

13206

\[ {}x^{\prime \prime }+4 x = \frac {\left (t -5\right ) \operatorname {Heaviside}\left (t -5\right )}{5}+\left (2-\frac {t}{5}\right ) \operatorname {Heaviside}\left (t -10\right ) \]

13247

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

13248

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

13249

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

13254

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13259

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

13261

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13264

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13265

\[ {}y^{\prime \prime }+y = 0 \]

13266

\[ {}y^{\prime \prime }+y = 0 \]

13267

\[ {}y^{\prime \prime }+y = 0 \]

13389

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13390

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]

13391

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

13392

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

13393

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

13394

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13395

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

13396

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

13399

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

13400

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-3 \left (1+x \right ) y^{\prime }+3 y = 0 \]

13401

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

13402

\[ {}\left (x^{2}-x +1\right ) y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+\left (1+x \right ) y = 0 \]

13403

\[ {}\left (2 x +1\right ) y^{\prime \prime }-4 \left (1+x \right ) y^{\prime }+4 y = 0 \]

13404

\[ {}\left (x^{3}-x^{2}\right ) y^{\prime \prime }-\left (x^{3}+2 x^{2}-2 x \right ) y^{\prime }+\left (2 x^{2}+2 x -2\right ) y = 0 \]

13405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

13406

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

13407

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13408

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

13409

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

13410

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

13413

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13414

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13415

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13416

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

13417

\[ {}y^{\prime \prime }+9 y = 0 \]

13418

\[ {}4 y^{\prime \prime }+y = 0 \]

13431

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13432

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

13433

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

13434

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13435

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13436

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

13437

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13438

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

13439

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13440

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]

13441

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

13442

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13443

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]

13444

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]

13451

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

13452

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

13453

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

13454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

13455

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

13456

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

13457

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

13458

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

13463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

13464

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

13471

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

13472

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]