5.9.7 Problems 601 to 700

Table 5.641: First order ode linear in derivative

#

ODE

Mathematica

Maple

1619

\[ {}y^{\prime } = \sqrt {x +y} \]

1620

\[ {}y^{\prime } = \frac {\tan \left (y\right )}{x -1} \]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]

1622

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]

1623

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]

1624

\[ {}y^{\prime } = 3 x \left (y-1\right )^{{1}/{3}} \]

1625

\[ {}y^{\prime }-y = x y^{2} \]

1626

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {y}{x}}}{x} \]

1627

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]

1628

\[ {}x^{2} y^{\prime } = y^{2}+x y-x^{2} \]

1629

\[ {}y^{\prime }+y = y^{2} \]

1630

\[ {}7 x y^{\prime }-2 y = -\frac {x^{2}}{y^{6}} \]

1631

\[ {}x^{2} y^{\prime }+2 y = 2 \,{\mathrm e}^{\frac {1}{x}} \sqrt {y} \]

1632

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \frac {1}{\left (x^{2}+1\right ) y} \]

1633

\[ {}y^{\prime }-x y = x^{3} y^{3} \]

1634

\[ {}y^{\prime }-\frac {\left (1+x \right ) y}{3 x} = y^{4} \]

1635

\[ {}y^{\prime }-2 y = x y^{3} \]

1636

\[ {}y^{\prime }-x y = x y^{{3}/{2}} \]

1637

\[ {}x y^{\prime }+y = y^{4} x^{4} \]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]

1639

\[ {}y^{\prime }-4 y = \frac {48 x}{y^{2}} \]

1640

\[ {}x^{2} y^{\prime }+2 x y = y^{3} \]

1641

\[ {}y^{\prime }-y = x \sqrt {y} \]

1642

\[ {}y^{\prime } = \frac {x +y}{x} \]

1643

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}} \]

1644

\[ {}x y^{3} y^{\prime } = y^{4}+x^{4} \]

1645

\[ {}y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right ) \]

1646

\[ {}x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

1647

\[ {}x y y^{\prime } = 2 y^{2}+x^{2} \]

1648

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}}{2 x y} \]

1649

\[ {}y^{\prime } = \frac {x y+y^{2}}{x^{2}} \]

1650

\[ {}y^{\prime } = \frac {y^{3}+x^{3}}{x y^{2}} \]

1651

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

1652

\[ {}y^{\prime } = \frac {y^{2}-3 x y-5 x^{2}}{x^{2}} \]

1653

\[ {}x^{2} y^{\prime } = 2 x^{2}+y^{2}+4 x y \]

1654

\[ {}x y y^{\prime } = 3 x^{2}+4 y^{2} \]

1655

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

1656

\[ {}\left (x y^{\prime }-y\right ) \left (\ln \left (y\right )-\ln \left (x \right )\right ) = x \]

1657

\[ {}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}} \]

1658

\[ {}y^{\prime } = \frac {x +2 y}{y+2 x} \]

1659

\[ {}y^{\prime } = \frac {y}{y-2 x} \]

1660

\[ {}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}} \]

1661

\[ {}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}} \]

1662

\[ {}x^{2} y^{\prime } = y^{2}+x y-4 x^{2} \]

1663

\[ {}x y y^{\prime } = x^{2}-x y+y^{2} \]

1664

\[ {}y^{\prime } = \frac {2 y^{2}-x y+2 x^{2}}{x y+2 x^{2}} \]

1665

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x y} \]

1666

\[ {}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1} \]

1667

\[ {}y^{\prime } = \frac {2 x +y+1}{x +2 y-4} \]

1668

\[ {}y^{\prime } = \frac {-x +3 y-14}{x +y-2} \]

1669

\[ {}3 y^{2} y^{\prime } x = y^{3}+x \]

1670

\[ {}x y y^{\prime } = 3 x^{6}+6 y^{2} \]

1671

\[ {}x^{3} y^{\prime } = 2 y^{2}+2 x^{2} y-2 x^{4} \]

1672

\[ {}y^{\prime } = y^{2} {\mathrm e}^{-x}+4 y+2 \,{\mathrm e}^{x} \]

1673

\[ {}y^{\prime } = \frac {y^{2}+\tan \left (x \right ) y+\tan \left (x \right )^{2}}{\sin \left (x \right )^{2}} \]

1674

\[ {}x \ln \left (x \right )^{2} y^{\prime } = -4 \ln \left (x \right )^{2}+y \ln \left (x \right )+y^{2} \]

1675

\[ {}2 x \left (y+2 \sqrt {x}\right ) y^{\prime } = \left (y+\sqrt {x}\right )^{2} \]

1676

\[ {}\left (y+{\mathrm e}^{x^{2}}\right ) y^{\prime } = 2 x \left (y^{2}+y \,{\mathrm e}^{x^{2}}+{\mathrm e}^{2 x^{2}}\right ) \]

1677

\[ {}y^{\prime }+\frac {2 y}{x} = \frac {3 x^{2} y^{2}+6 x y+2}{x^{2} \left (2 x y+3\right )} \]

1678

\[ {}y^{\prime }+\frac {3 y}{x} = \frac {3 y^{2} x^{4}+10 x^{2} y+6}{x^{3} \left (2 x^{2} y+5\right )} \]

1679

\[ {}y^{\prime } = 1+x -\left (2 x +1\right ) y+x y^{2} \]

1680

\[ {}6 x^{2} y^{2}+4 x^{3} y y^{\prime } = 0 \]

1681

\[ {}3 y \cos \left (x \right )+4 x \,{\mathrm e}^{x}+2 x^{3} y+\left (3 \sin \left (x \right )+3\right ) y^{\prime } = 0 \]

1682

\[ {}14 x^{2} y^{3}+21 y^{2} y^{\prime } x^{2} = 0 \]

1683

\[ {}2 x -2 y^{2}+\left (12 y^{2}-4 x y\right ) y^{\prime } = 0 \]

1684

\[ {}\left (x +y\right )^{2}+\left (x +y\right )^{2} y^{\prime } = 0 \]

1685

\[ {}4 x +7 y+\left (4 y+3 x \right ) y^{\prime } = 0 \]

1686

\[ {}-2 y^{2} \sin \left (x \right )+3 y^{3}-2 x +\left (4 y \cos \left (x \right )+9 x y^{2}\right ) y^{\prime } = 0 \]

1687

\[ {}2 x +y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

1688

\[ {}3 x^{2}+2 x y+4 y^{2}+\left (x^{2}+8 x y+18 y\right ) y^{\prime } = 0 \]

1689

\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \]

1690

\[ {}\frac {1}{x}+2 x +\left (\frac {1}{y}+2 y\right ) y^{\prime } = 0 \]

1691

\[ {}y \sin \left (x y\right )+x y^{2} \cos \left (x y\right )+\left (x \sin \left (x y\right )+x y^{2} \cos \left (x y\right )\right ) y^{\prime } = 0 \]

1692

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

1693

\[ {}{\mathrm e}^{x} \left (x^{2} y^{2}+2 x y^{2}\right )+6 x +\left (2 x^{2} y \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

1694

\[ {}x^{2} {\mathrm e}^{x^{2}+y} \left (2 x^{2}+3\right )+4 x +\left (x^{3} {\mathrm e}^{x^{2}+y}-12 y^{2}\right ) y^{\prime } = 0 \]

1695

\[ {}{\mathrm e}^{x y} \left (x^{4} y+4 x^{3}\right )+3 y+\left (x^{5} {\mathrm e}^{x y}+3 x \right ) y^{\prime } = 0 \]

1696

\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1697

\[ {}4 y^{2} x^{3}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime } = 0 \]

1698

\[ {}-4 y \cos \left (x \right )+4 \sin \left (x \right ) \cos \left (x \right )+\sec \left (x \right )^{2}+\left (4 y-4 \sin \left (x \right )\right ) y^{\prime } = 0 \]

1699

\[ {}\left (y^{3}-1\right ) {\mathrm e}^{x}+3 y^{2} \left (1+{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

1700

\[ {}\sin \left (x \right )-y \sin \left (x \right )-2 \cos \left (x \right )+\cos \left (x \right ) y^{\prime } = 0 \]

1701

\[ {}\left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

1703

\[ {}{\mathrm e}^{x} \left (y^{2} x^{4}+4 y^{2} x^{3}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

1704

\[ {}y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime } = 0 \]

1705

\[ {}3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

1706

\[ {}y^{4} x^{3}+2 x +\left (y^{3} x^{4}+3 y\right ) y^{\prime } = 0 \]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

1708

\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]

1709

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]

1710

\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

1713

\[ {}-x y^{\prime }+y = 0 \]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

1715

\[ {}2 y^{3}+3 y^{\prime } y^{2} = 0 \]

1716

\[ {}5 x y+2 y+5+2 x y^{\prime } = 0 \]

1717

\[ {}x y+x +2 y+1+\left (1+x \right ) y^{\prime } = 0 \]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]