4.1.1 Problems 1 to 100

Table 4.1: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

31

\[ {}y^{\prime } = \sqrt {x -y} \]

145

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

204

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

232

\[ {}y y^{\prime \prime } = 6 x^{4} \]

604

\[ {}[x^{\prime }\left (t \right ) = t x \left (t \right )-{\mathrm e}^{t} y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{-t} x \left (t \right )+t^{2} y \left (t \right )-\sin \left (t \right )] \]

608

\[ {}[x^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )+{\mathrm e}^{t} z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+t^{2} y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = {\mathrm e}^{-t} x \left (t \right )+3 t y \left (t \right )+t^{3} z \left (t \right )] \]

769

\[ {}\frac {2 x}{y}-\frac {3 y^{2}}{x^{4}}+\left (\frac {2 y}{x^{3}}-\frac {x^{2}}{y^{2}}+\frac {1}{\sqrt {y}}\right ) y^{\prime } = 0 \]

783

\[ {}y^{\prime } = 1+x^{2}+y^{2}+x^{2} y^{4} \]

796

\[ {}9 \sqrt {x}\, y^{{4}/{3}}-12 x^{{1}/{5}} y^{{3}/{2}}+\left (8 x^{{3}/{2}} y^{{1}/{3}}-15 x^{{6}/{5}} \sqrt {y}\right ) y^{\prime } = 0 \]

1135

\[ {}y^{\prime } = \frac {-{\mathrm e}^{-x}+x}{{\mathrm e}^{y}+x} \]

1200

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

1203

\[ {}x \ln \left (x \right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

1360

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

1463

\[ {}t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

1535

\[ {}y^{\prime } = {| y|}+1 \]

1608

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\sin \left (x \right )} \]

1609

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}+y}{x^{2}+y^{2}} \]

1611

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{\ln \left (x y\right )} \]

1612

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right ) y^{{1}/{3}} \]

1614

\[ {}y^{\prime } = \ln \left (1+x^{2}+y^{2}\right ) \]

1616

\[ {}y^{\prime } = \sqrt {x^{2}+y^{2}} \]

1618

\[ {}y^{\prime } = \left (x^{2}+y^{2}\right )^{2} \]

1689

\[ {}2 x^{2}+8 x y+y^{2}+\left (2 x^{2}+\frac {x y^{3}}{3}\right ) y^{\prime } = 0 \]

1691

\[ {}y \sin \left (x y\right )+x y^{2} \cos \left (x y\right )+\left (x \sin \left (x y\right )+x y^{2} \cos \left (x y\right )\right ) y^{\prime } = 0 \]

1696

\[ {}3 x^{2} \cos \left (x \right ) y-x^{3} y \sin \left (x \right )+4 x +\left (8 y-x^{4} \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1755

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

2347

\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]

2348

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2350

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2351

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2352

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2353

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2354

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2356

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2357

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2496

\[ {}\sqrt {1+y^{2}}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]

2515

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (2 y+2 t^{2}\right ) y^{\prime } = 0 \]

2523

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2525

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2531

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2536

\[ {}y^{\prime } = t y^{a} \]

2538

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2540

\[ {}y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2592

\[ {}y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2789

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-2 y \left (t \right )^{2}-3 x \left (t \right ) y \left (t \right )] \]

2790

\[ {}[x^{\prime }\left (t \right ) = -b x \left (t \right ) y \left (t \right )+m, y^{\prime }\left (t \right ) = b x \left (t \right ) y \left (t \right )-g y \left (t \right )] \]

2795

\[ {}[x^{\prime }\left (t \right ) = -1-y \left (t \right )-{\mathrm e}^{x \left (t \right )}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ) \left ({\mathrm e}^{x \left (t \right )}-1\right ), z^{\prime }\left (t \right ) = x \left (t \right )+\sin \left (z \left (t \right )\right )] \]

2812

\[ {}\left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2814

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2817

\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {}[x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2868

\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \]

2912

\[ {}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0 \]

2924

\[ {}x y^{2}+2 y+\left (2 y^{3}-x^{2} y+2 x \right ) y^{\prime } = 0 \]

2956

\[ {}y-x^{2} \sqrt {x^{2}-y^{2}}-x y^{\prime } = 0 \]

2957

\[ {}y \left (x +y^{2}\right )+x \left (x -y^{2}\right ) y^{\prime } = 0 \]

3002

\[ {}1+x y \left (x y^{2}+1\right ) y^{\prime } = 0 \]

3054

\[ {}y^{2}+\left (x^{3}-2 x y\right ) y^{\prime } = 0 \]

3056

\[ {}y^{3}+2 x^{2} y+\left (-3 x^{3}-2 x y^{2}\right ) y^{\prime } = 0 \]

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3287

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

3290

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

3321

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

3678

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

3684

\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

3892

\[ {}\left [x_{1}^{\prime }\left (t \right ) = t \cot \left (t^{2}\right ) x_{1} \left (t \right )+\frac {t \cos \left (t^{2}\right ) x_{3} \left (t \right )}{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )}{t}-x_{3} \left (t \right )+2-t \sin \left (t \right ), x_{3}^{\prime }\left (t \right ) = \csc \left (t^{2}\right ) x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+1-\cos \left (t \right ) t\right ] \]

4079

\[ {}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

4111

\[ {}x y y^{\prime } = \left (1+x \right ) \left (1+y\right ) \]

4253

\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

4298

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]

4354

\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

4390

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

4392

\[ {}y = x y^{\prime }-x^{2} {y^{\prime }}^{3} \]

4393

\[ {}y \left (y-2 x y^{\prime }\right )^{3} = {y^{\prime }}^{2} \]

4397

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

4434

\[ {}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y \]

4648

\[ {}y^{\prime }+f \left (x \right )^{2} = f^{\prime }\left (x \right )+y^{2} \]

4668

\[ {}y^{\prime } = f \left (x \right )+a y+b y^{2} \]

4670

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+y^{2} a \]

4683

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \]

4696

\[ {}y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

4699

\[ {}y^{\prime } = f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{n} \]

4707

\[ {}y^{\prime }+\left (f \left (x \right )-y\right ) g \left (x \right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

4712

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) \cos \left (a y\right ) = 0 \]

4728

\[ {}y^{\prime }+f \left (x \right )+g \left (x \right ) \tan \left (y\right ) = 0 \]

4807

\[ {}x y^{\prime } = \sin \left (x -y\right ) \]

4983

\[ {}x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (1-n \right ) x^{n -1} = 0 \]

4986

\[ {}x^{k} y^{\prime } = a \,x^{m}+b y^{n} \]

5017

\[ {}y y^{\prime }+x^{3}+y = 0 \]

5020

\[ {}y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \]

5072

\[ {}\left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 y \sin \left (x \right )\right ) = 0 \]

5120

\[ {}x \left (a +y\right ) y^{\prime }+b x +c y = 0 \]