5.19.3 Problems 201 to 300

Table 5.897: Third and higher order non-homogeneous ODE

#

ODE

Mathematica

Maple

4477

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

4478

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime } = 2 \,{\mathrm e}^{x} \]

4489

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 15 \sin \left (2 x \right ) \]

4490

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 \sin \left (2 x \right ) \]

4491

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{2 x} \]

4492

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 10 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4493

\[ {}y^{\prime \prime \prime }-2 y^{\prime }-4 y = 50 \,{\mathrm e}^{2 x}+50 \sin \left (x \right ) \]

4494

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 12 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{3 x} \]

4495

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 32 \,{\mathrm e}^{2 x}+16 x^{3} \]

4496

\[ {}y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 72 \,{\mathrm e}^{3 x}+729 x^{2} \]

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 \ln \left (x \right ) x^{2} \]

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} \]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]

6512

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

6526

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 1+{\mathrm e}^{x} \]

6527

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (x \right ) \]

6528

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

6534

\[ {}y^{\prime \prime \prime \prime } = 5 x \]

6554

\[ {}y^{\prime \prime \prime }-y = 5 \]

6556

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x^{2} \]

6696

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

6713

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]

6714

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

6715

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

6732

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

6734

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 \,{\mathrm e}^{2 x} x +{\mathrm e}^{2 x} \]

6738

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

6739

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

6742

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

6751

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

6752

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

6775

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

6779

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

6783

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y^{\prime \prime } y\right ) = x \]

6784

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y^{\prime \prime } y+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

6785

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y^{\prime \prime } y-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

6899

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 12 x^{2} \]

7529

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

7530

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

7531

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

7534

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

7539

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

7582

\[ {}y^{\prime \prime \prime } = x^{2} \]

7659

\[ {}y^{\prime \prime \prime }-y = x \]

7660

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

7661

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

7662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

7663

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

7672

\[ {}y^{\prime \prime \prime } = x^{2}+\sin \left (x \right ) {\mathrm e}^{-x} \]

7673

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7984

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

8032

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

8033

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

8034

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]

8332

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]

8333

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]

8858

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

8872

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]

8877

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

9165

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

11453

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

11456

\[ {}y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

11468

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

11469

\[ {}y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-y a^{3}-{\mathrm e}^{a x} = 0 \]

11473

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } \sin \left (x \right )-2 y^{\prime } \cos \left (x \right )+y \sin \left (x \right )-\ln \left (x \right ) = 0 \]

11478

\[ {}4 y^{\prime \prime \prime }-8 y^{\prime \prime }-11 y^{\prime }-3 y+18 \,{\mathrm e}^{x} = 0 \]

11484

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

11485

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

11496

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0 \]

11497

\[ {}x^{2} y^{\prime \prime \prime }+5 x y^{\prime \prime }+4 y^{\prime }-\ln \left (x \right ) = 0 \]

11506

\[ {}\left (x^{2}+1\right ) y^{\prime \prime \prime }+8 x y^{\prime \prime }+10 y^{\prime }-3+\frac {1}{x^{2}}-2 \ln \left (x \right ) = 0 \]

11512

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-6 x^{3} \left (x -1\right ) \ln \left (x \right )+x^{3} \left (x +8\right ) = 0 \]

11518

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+\ln \left (x \right )+2 x y^{\prime }-y-2 x^{3} = 0 \]

11523

\[ {}4 x^{4} y^{\prime \prime \prime }-4 x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }-1 = 0 \]

11529

\[ {}y^{\prime \prime \prime } \sin \left (x \right )+\left (2 \cos \left (x \right )+1\right ) y^{\prime \prime }-\sin \left (x \right ) y^{\prime }-\cos \left (x \right ) = 0 \]

11530

\[ {}\left (x +\sin \left (x \right )\right ) y^{\prime \prime \prime }+3 \left (1+\cos \left (x \right )\right ) y^{\prime \prime }-3 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+\sin \left (x \right ) = 0 \]

11536

\[ {}y^{\prime \prime \prime \prime }+4 y-f = 0 \]

11538

\[ {}y^{\prime \prime \prime \prime }-12 y^{\prime \prime }+12 y-16 x^{4} {\mathrm e}^{x^{2}} = 0 \]

11539

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y-\cosh \left (a x \right ) = 0 \]

11545

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+4 y-32 \sin \left (2 x \right )+24 \cos \left (2 x \right ) = 0 \]

11547

\[ {}4 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+11 y^{\prime \prime }-3 y^{\prime }-4 \cos \left (x \right ) = 0 \]

11548

\[ {}y^{\prime \prime \prime \prime } x +5 y^{\prime \prime \prime }-24 = 0 \]

11551

\[ {}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

11572

\[ {}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \]

11574

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0 \]

11578

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime }-a x -b \sin \left (x \right )-c \cos \left (x \right ) = 0 \]

11579

\[ {}y^{\left (6\right )}+y-\sin \left (\frac {3 x}{2}\right ) \sin \left (\frac {x}{2}\right ) = 0 \]

11580

\[ {}y^{\left (5\right )}-a x y-b = 0 \]

11582

\[ {}y^{\left (5\right )}+a y^{\prime \prime \prime \prime }-f = 0 \]

11585

\[ {}x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

11837

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

11840

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

12929

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

12931

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

12934

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

12936

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

12943

\[ {}y^{\prime \prime \prime }-y = x^{2} \]