5.24.1 Problems 1 to 100

Table 5.1015: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

148

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

151

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

152

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime } = 2 \]

153

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

154

\[ {}y^{\prime \prime } = \left (x +y^{\prime }\right )^{2} \]

155

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

156

\[ {}y^{3} y^{\prime \prime } = 1 \]

157

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

158

\[ {}y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

170

\[ {}r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

227

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

228

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

229

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

230

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

232

\[ {}y y^{\prime \prime } = 6 x^{4} \]

233

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

244

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

245

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

246

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

247

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

255

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

256

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

262

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

264

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

266

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

267

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

268

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

269

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

270

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

314

\[ {}a \,x^{3} y^{\prime \prime \prime }+b \,x^{2} y^{\prime \prime }+c x y^{\prime }+y d = 0 \]

315

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

316

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

317

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \]

318

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

319

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

320

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

321

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

376

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

377

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

378

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

379

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{{4}/{3}} \]

380

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

381

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]

514

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

517

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (x +8\right ) y = 0 \]

518

\[ {}36 x^{2} y^{\prime \prime }+60 x y^{\prime }+\left (9 x^{3}-5\right ) y = 0 \]

519

\[ {}16 x^{2} y^{\prime \prime }+24 x y^{\prime }+\left (144 x^{3}+1\right ) y = 0 \]

520

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

521

\[ {}4 x^{2} y^{\prime \prime }-12 x y^{\prime }+\left (15+16 x \right ) y = 0 \]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

523

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-2 \left (-x^{5}+14\right ) y = 0 \]

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+t x = 0 \]

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]

819

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

820

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

821

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

822

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

834

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

835

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

836

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

837

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

860

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

861

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

902

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 72 x^{5} \]

903

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{3} \]

904

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{4} \]

905

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+3 y = 8 x^{{4}/{3}} \]

906

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \ln \left (x \right ) \]

907

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}-1 \]

928

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

930

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

931

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

932

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

933

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

934

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

958

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime } = 0 \]

959

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

960

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

961

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

962

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]