5.29.5 Problems 401 to 500

Table 5.1217: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

15520

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

15521

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

15522

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

15523

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

15524

\[ {}y^{\prime \prime } x -y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

15525

\[ {}y^{\prime \prime } x +\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15526

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15527

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

15541

\[ {}2 y^{\prime \prime } x +y^{\prime } = \sqrt {x} \]

15569

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

15572

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

15574

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

15577

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

15578

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

15583

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

15584

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

16001

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

16354

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16355

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16356

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16365

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16366

\[ {}\left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16460

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16461

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16462

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16463

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16464

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16465

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16466

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16467

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16478

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16479

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16480

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]

16481

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16490

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16492

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16497

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16613

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

16923

\[ {}y^{\prime \prime } x = y^{\prime }+x^{2} \]

17127

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

17128

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

17129

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

17130

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

17131

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

17132

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

17133

\[ {}\left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

17134

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

17137

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (1+x \right ) y^{\prime }+6 y = 6 \]

17141

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

17142

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

17143

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17144

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

17145

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

17146

\[ {}y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{2 x} x -1 \]

17147

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

17157

\[ {}y^{\prime \prime } x -\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

17158

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

17159

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

17160

\[ {}y^{\prime \prime } x +\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

17161

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

17162

\[ {}4 y^{\prime \prime } x +2 y^{\prime }+y = 1 \]

17163

\[ {}4 y^{\prime \prime } x +2 y^{\prime }+y = \frac {6+x}{x^{2}} \]

17164

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

17165

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17166

\[ {}2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

17167

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

17168

\[ {}x^{3} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

17169

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]

17550

\[ {}y^{\prime \prime }-t y = \frac {1}{\pi } \]

17551

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

17557

\[ {}t y^{\prime \prime }+3 y = t \]

17558

\[ {}\left (t -1\right ) y^{\prime \prime }-3 t y^{\prime }+4 y = \sin \left (t \right ) \]

17559

\[ {}t \left (t -4\right ) y^{\prime \prime }+3 t y^{\prime }+4 y = 2 \]

17672

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) \]

17673

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x \]

17674

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right ) \]

17675

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

17699

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 2 t^{3} \]

17700

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

17701

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

17702

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

17703

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = g \left (x \right ) \]

17704

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

17705

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

17706

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) x^{2} \]

17707

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

17708

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

17710

\[ {}t y^{\prime \prime }-\left (t +1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{2 t} \]

17711

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

18001

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 2 x^{3} \]

18002

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

18006

\[ {}y^{\prime \prime }+\frac {y}{\ln \left (x \right ) x^{2}} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

18027

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

18028

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

18029

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]