5.29.6 Problems 501 to 600

Table 5.1219: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

18031

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 4 \cos \left (\ln \left (1+x \right )\right ) \]

18036

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

18193

\[ {}y^{\prime \prime } x +y^{\prime } = 4 x \]

18214

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

18249

\[ {}y^{\prime \prime } x -y^{\prime } = 3 x^{2} \]

18252

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

18355

\[ {}y^{\prime \prime } x -\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

18356

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

18459

\[ {}y^{\prime \prime } x +\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

18595

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

18606

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18685

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

18689

\[ {}y^{\prime \prime } x +2 y^{\prime } = 2 x \]

18690

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

18691

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

18692

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

18693

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

18695

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (6 x +1\right ) y^{\prime }+6 y = \sin \left (x \right ) \]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

18705

\[ {}y^{\prime \prime } x +3 y^{\prime } = 3 x \]

18923

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

18924

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

18927

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

18928

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

18929

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

18930

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

18934

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

18936

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

18940

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

18941

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

18944

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

18945

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

18946

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

18948

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

18950

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

18951

\[ {}\sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19003

\[ {}y^{\prime \prime } x +\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

19004

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19015

\[ {}y^{\prime \prime } x -y^{\prime }+4 x^{3} y = x^{5} \]

19016

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

19025

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19029

\[ {}y^{\prime \prime }+x y^{\prime }-y = f \left (x \right ) \]

19030

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19045

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

19316

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

19326

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

19327

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

19328

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

19329

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

19330

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

19331

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

19332

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

19333

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

19334

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

19338

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

19341

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19342

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

19346

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

19348

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

19352

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x \]

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+a x = 0 \]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = a x \]

19390

\[ {}y^{\prime }-y^{\prime \prime } x -\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19391

\[ {}y^{\prime \prime } x +y^{\prime } = x \]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19430

\[ {}{\mathrm e}^{x} \left (y^{\prime \prime } x -y^{\prime }\right ) = x^{3} \]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19435

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19437

\[ {}y^{\prime \prime } x +\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19438

\[ {}\left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

19440

\[ {}y^{\prime \prime }+x y^{\prime }-y = X \]

19443

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = {\mathrm e}^{x} x^{3} \]

19450

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

19453

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

19459

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

19470

\[ {}y^{\prime \prime } x +\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

19471

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

19472

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (2 x +5\right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19476

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

19478

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }-\left (x^{2}+1\right ) y = x \]

19479

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = -4 x^{3} \]

19482

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19485

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

19489

\[ {}\left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

19490

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

19491

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

19493

\[ {}y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]