|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} n \,x^{3} y^{\prime \prime \prime } = y-x y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a y^{\prime \prime \prime } = y^{\prime \prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime \prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } = \sin \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+y = \left (1+{\mathrm e}^{x}\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2}+3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (2 x -1\right )^{3} y^{\prime \prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime } = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|