5.29.4 Problems 301 to 400

Table 5.1215: Second order, Linear, non-homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

12951

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y = x \]

12965

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

12966

\[ {}y^{\prime \prime } x -\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

12968

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

12969

\[ {}y^{\prime \prime } \sin \left (x \right )+2 y^{\prime } \cos \left (x \right )+3 y \sin \left (x \right ) = {\mathrm e}^{x} \]

12972

\[ {}y^{\prime \prime } x +2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

12973

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{4 x} \]

12976

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

12977

\[ {}y^{\prime \prime } x -\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

12985

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

12990

\[ {}y^{\prime \prime }+x y^{\prime } = x \]

13000

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = x \]

13001

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

13013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

13043

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]

13072

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

13166

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

13170

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

13523

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+10 y = 3 x^{4}+6 x^{3} \]

13524

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 1 \]

13525

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

13526

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

13527

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

13528

\[ {}\left (2 x +1\right ) \left (1+x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = \left (2 x +1\right )^{2} \]

13529

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = \sin \left (x \right )^{3} \]

13544

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 4 x -6 \]

13545

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13546

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

13547

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 2 x \ln \left (x \right ) \]

13548

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

13553

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]

13554

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = -6 x^{3}+4 x^{2} \]

13555

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 10 x^{2} \]

13556

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 2 x^{3} \]

13557

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]

13793

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13795

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

13904

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13931

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13970

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13984

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13987

\[ {}y^{\prime \prime } x +2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

13988

\[ {}y^{\prime \prime } \sin \left (x \right )+x y^{\prime }+7 y = 1 \]

13989

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

14002

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

14003

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }-\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

14004

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

14015

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (1+3 x \right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

14017

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

14018

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

14087

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

14088

\[ {}t^{2} y^{\prime \prime }-6 t y^{\prime }+\sin \left (2 t \right ) y = \ln \left (t \right ) \]

14089

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

14090

\[ {}y^{\prime \prime }+t y^{\prime }-y \ln \left (t \right ) = \cos \left (2 t \right ) \]

14091

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14153

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

14230

\[ {}y^{\prime \prime } x -y^{\prime } = {\mathrm e}^{x} x^{2} \]

14232

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \sin \left (2 x \right ) \]

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14484

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

14485

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

14495

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

14985

\[ {}x^{2} y^{\prime \prime } = 1 \]

15007

\[ {}y^{\prime \prime } x +2 = \sqrt {x} \]

15209

\[ {}y^{\prime \prime } x +4 y^{\prime } = 18 x^{2} \]

15237

\[ {}y^{\prime \prime } x -y^{\prime } = 6 x^{5} \]

15243

\[ {}y^{\prime \prime } x +4 y^{\prime } = 18 x^{2} \]

15249

\[ {}y^{\prime \prime } x +2 y^{\prime } = 6 \]

15262

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

15288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15289

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

15290

\[ {}y^{\prime \prime } x +\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15291

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15419

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

15425

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

15426

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

15427

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

15428

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

15429

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

15430

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

15431

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

15505

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

15506

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

15507

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

15508

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

15509

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

15510

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

15511

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

15512

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 \ln \left (x \right ) x^{2} \]

15513

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

15519

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]