5.1.62 Problems 6101 to 6200

Table 5.123: First order ode

#

ODE

Mathematica

Maple

13737

\[ {}x^{\prime }+5 x = t \]

13738

\[ {}x^{\prime }+\left (a +\frac {1}{t}\right ) x = b \]

13739

\[ {}T^{\prime } = -k \left (T-\mu -a \cos \left (\omega \left (t -\phi \right )\right )\right ) \]

13740

\[ {}2 x y-\sec \left (x \right )^{2}+\left (x^{2}+2 y\right ) y^{\prime } = 0 \]

13741

\[ {}1+y \,{\mathrm e}^{x}+x \,{\mathrm e}^{x} y+\left (x \,{\mathrm e}^{x}+2\right ) y^{\prime } = 0 \]

13742

\[ {}\left (x \cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime }+\sin \left (y\right )-y \sin \left (x \right ) = 0 \]

13743

\[ {}{\mathrm e}^{x} \sin \left (y\right )+y+\left ({\mathrm e}^{x} \cos \left (y\right )+x +{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

13744

\[ {}{\mathrm e}^{-y} \sec \left (x \right )+2 \cos \left (x \right )-{\mathrm e}^{-y} y^{\prime } = 0 \]

13745

\[ {}V^{\prime }\left (x \right )+2 y y^{\prime } = 0 \]

13746

\[ {}\left (\frac {1}{y}-a \right ) y^{\prime }+\frac {2}{x}-b = 0 \]

13747

\[ {}x y+y^{2}+x^{2}-x^{2} y^{\prime } = 0 \]

13748

\[ {}x^{\prime } = \frac {x^{2}+t \sqrt {x^{2}+t^{2}}}{t x} \]

13749

\[ {}x^{\prime } = k x-x^{2} \]

13848

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

13849

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

13850

\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \]

13851

\[ {}x y^{\prime }+y = x^{3} \]

13852

\[ {}-x y^{\prime }+y = x^{2} y y^{\prime } \]

13853

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

13854

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

13856

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

13857

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

13860

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

13861

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

13862

\[ {}y = x y^{\prime }+\frac {1}{y} \]

13863

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

13864

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

13865

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

13866

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

13867

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

13868

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

13869

\[ {}y^{\prime } = y^{2}+x \]

13870

\[ {}y^{\prime } = x y^{3}+x^{2} \]

13871

\[ {}y^{\prime } = x^{2}-y^{2} \]

13872

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

13873

\[ {}{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \]

13874

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

13875

\[ {}y^{\prime } = x -y^{2} \]

13876

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

13877

\[ {}y \left (x -y\right )-x^{2} y^{\prime } = 0 \]

13878

\[ {}x^{\prime }+5 x = 10 t +2 \]

13879

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]

13880

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13881

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13882

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

13883

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

13884

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

13885

\[ {}y^{\prime }-\frac {3 y}{x}+y^{2} x^{3} = 0 \]

13886

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

13887

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

13888

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

13889

\[ {}y \left (x -y\right )-x^{2} y^{\prime } = 0 \]

13890

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

13891

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

13892

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

13893

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

13894

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

13895

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

13896

\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \]

13897

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

13898

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

13899

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right )-y^{2} = 0 \]

13948

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

13949

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

13950

\[ {}y^{\prime } = \sin \left (x y\right ) \]

13951

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

13952

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

13953

\[ {}x y^{\prime }+y = x y^{2} \]

13954

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

13955

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

13956

\[ {}y^{\prime } = \ln \left (x y\right ) \]

13957

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

13964

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

13966

\[ {}y y^{\prime } = 1 \]

13967

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

13968

\[ {}5 y^{\prime }-x y = 0 \]

13969

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

13975

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

14053

\[ {}2 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

14057

\[ {}y^{\prime }-y = {\mathrm e}^{2 t} \]

14059

\[ {}y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right ) \]

14060

\[ {}y^{\prime }-2 y = 4 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -2\right )\right ) \]

14080

\[ {}10 Q^{\prime }+100 Q = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

14154

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

14155

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

14156

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

14157

\[ {}x y \left (-{y^{\prime }}^{2}+1\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \]

14162

\[ {}-x y^{\prime }+y = 0 \]

14163

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

14165

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

14169

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

14171

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]