6.124 Problems 12301 to 12400

Table 6.247: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

12301

\[ {} -y+y^{\prime \prime } = 0 \]

12302

\[ {} y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

12303

\[ {} y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

12304

\[ {} y^{\prime \prime }+l y = 0 \]

12305

\[ {} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

12306

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

12307

\[ {} y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

12308

\[ {} y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

12309

\[ {} y^{\prime \prime }-c \,x^{a} y = 0 \]

12310

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

12311

\[ {} y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

12312

\[ {} y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

12313

\[ {} a \,{\mathrm e}^{b x} y+y^{\prime \prime } = 0 \]

12314

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

12315

\[ {} y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

12316

\[ {} y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

12317

\[ {} y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

12318

\[ {} y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

12319

\[ {} y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

12320

\[ {} y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

12321

\[ {} y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

12322

\[ {} y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

12323

\[ {} y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

12324

\[ {} y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = 0 \]

12325

\[ {} b y+a y^{\prime }+y^{\prime \prime } = 0 \]

12326

\[ {} y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

12327

\[ {} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

12328

\[ {} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

12329

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

12330

\[ {} -y+x y^{\prime }+y^{\prime \prime } = 0 \]

12331

\[ {} y^{\prime \prime }+x y^{\prime }+\left (n +1\right ) y = 0 \]

12332

\[ {} y^{\prime \prime }+x y^{\prime }-n y = 0 \]

12333

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

12334

\[ {} -a y-x y^{\prime }+y^{\prime \prime } = 0 \]

12335

\[ {} y^{\prime \prime }-x y^{\prime }+\left (x -1\right ) y = 0 \]

12336

\[ {} y^{\prime \prime }-2 x y^{\prime }+a y = 0 \]

12337

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

12338

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (3 x^{2}+2 n -1\right ) y = 0 \]

12339

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

12340

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

12341

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

12342

\[ {} b y+a x y^{\prime }+y^{\prime \prime } = 0 \]

12343

\[ {} y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

12344

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12345

\[ {} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

12346

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

12347

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-\left (1+x \right )^{2} y = 0 \]

12348

\[ {} y^{\prime \prime }-x^{2} \left (1+x \right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

12349

\[ {} -x^{3} y+x^{4} y^{\prime }+y^{\prime \prime } = 0 \]

12350

\[ {} y^{\prime \prime }+a \,x^{-1+q} y^{\prime }+b \,x^{q -2} y = 0 \]

12351

\[ {} y^{\prime \prime }+\sqrt {x}\, y^{\prime }+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

12352

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

12353

\[ {} y^{\prime \prime }-\left (1+2 \,{\mathrm e}^{x}\right ) y^{\prime }+y \,{\mathrm e}^{2 x}-{\mathrm e}^{3 x} = 0 \]

12354

\[ {} y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

12355

\[ {} y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

12356

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

12357

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-y \cos \left (x \right )^{2} = 0 \]

12358

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y = 0 \]

12359

\[ {} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\sin \left (x \right )^{2} y = 0 \]

12360

\[ {} b y+a \tan \left (x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

12361

\[ {} \left (-a^{2}+b^{2}\right ) y+2 a \cot \left (a x \right ) y^{\prime }+y^{\prime \prime } = 0 \]

12362

\[ {} y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

12363

\[ {} y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

12364

\[ {} y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0 \]

12365

\[ {} y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

12366

\[ {} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

12367

\[ {} 4 y^{\prime \prime }+9 x y = 0 \]

12368

\[ {} 4 y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

12369

\[ {} 4 y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-\left (5 \tan \left (x \right )^{2}+2\right ) y = 0 \]

12370

\[ {} a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y = 0 \]

12371

\[ {} a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0 \]

12372

\[ {} x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

12373

\[ {} \left (x +a \right ) y+x y^{\prime \prime } = 0 \]

12374

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

12375

\[ {} x y^{\prime \prime }+y^{\prime }+a y = 0 \]

12376

\[ {} x y^{\prime \prime }+y^{\prime }+l x y = 0 \]

12377

\[ {} x y^{\prime \prime }+y^{\prime }+\left (x +a \right ) y = 0 \]

12378

\[ {} x y^{\prime \prime }-y^{\prime }+a y = 0 \]

12379

\[ {} x y^{\prime \prime }-y^{\prime }-a \,x^{3} y = 0 \]

12380

\[ {} x y^{\prime \prime }-y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y = 0 \]

12381

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

12382

\[ {} a x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

12383

\[ {} a \,x^{2} y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

12384

\[ {} x y^{\prime \prime }-2 y^{\prime }+a y = 0 \]

12385

\[ {} x y^{\prime \prime }+v y^{\prime }+a y = 0 \]

12386

\[ {} b x y+a y^{\prime }+x y^{\prime \prime } = 0 \]

12387

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{\operatorname {a1}} y = 0 \]

12388

\[ {} x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y = 0 \]

12389

\[ {} x y^{\prime \prime }+\left (x +a +b \right ) y^{\prime }+a y = 0 \]

12390

\[ {} x y^{\prime \prime }-x y^{\prime }-y-x \left (1+x \right ) {\mathrm e}^{x} = 0 \]

12391

\[ {} x y^{\prime \prime }-x y^{\prime }-a y = 0 \]

12392

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

12393

\[ {} x y^{\prime \prime }-y^{\prime } \left (1+x \right )-2 \left (x -1\right ) y = 0 \]

12394

\[ {} x y^{\prime \prime }+\left (-x +b \right ) y^{\prime }-a y = 0 \]

12395

\[ {} x y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-y = 0 \]

12396

\[ {} x y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y = 0 \]

12397

\[ {} x y^{\prime \prime }+\left (a x +b +n \right ) y^{\prime }+n a y = 0 \]

12398

\[ {} x y^{\prime \prime }-\left (a +b \right ) \left (1+x \right ) y^{\prime }+a b x y = 0 \]

12399

\[ {} \left (a b x +a n +b m \right ) y+\left (m +n +x \left (a +b \right )\right ) y^{\prime }+x y^{\prime \prime } = 0 \]

12400

\[ {} x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]