6.125 Problems 12401 to 12500

Table 6.249: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

12401

\[ {} x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

12402

\[ {} x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

12403

\[ {} x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

12404

\[ {} x y^{\prime \prime }-\left (2 x^{2} a +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

12405

\[ {} x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \]

12406

\[ {} x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

12407

\[ {} x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

12408

\[ {} x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

12409

\[ {} f \left (x \right ) y+\left (2+f \left (x \right ) x \right ) y^{\prime }+x y^{\prime \prime } = 0 \]

12410

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

12411

\[ {} a y+y^{\prime }+2 x y^{\prime \prime } = 0 \]

12412

\[ {} 2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0 \]

12413

\[ {} 2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \]

12414

\[ {} \left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \]

12415

\[ {} 4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \]

12416

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

12417

\[ {} 4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

12418

\[ {} 4 x y^{\prime \prime }+4 y-\left (x +2\right ) y+l y = 0 \]

12419

\[ {} 4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \]

12420

\[ {} 16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \]

12421

\[ {} a x y^{\prime \prime }+b y^{\prime }+c y = 0 \]

12422

\[ {} a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+3 b y = 0 \]

12423

\[ {} 5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y = 0 \]

12424

\[ {} 2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \]

12425

\[ {} 2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \]

12426

\[ {} \left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0 \]

12427

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

12428

\[ {} x^{2} y^{\prime \prime }-12 y = 0 \]

12429

\[ {} a y+x^{2} y^{\prime \prime } = 0 \]

12430

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

12431

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

12432

\[ {} x^{2} y^{\prime \prime }-\left (x^{2} a +2\right ) y = 0 \]

12433

\[ {} x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

12434

\[ {} x^{2} y^{\prime \prime }+\left (x^{2} a -v \left (v -1\right )\right ) y = 0 \]

12435

\[ {} x^{2} y^{\prime \prime }+\left (x^{2} a +b x +c \right ) y = 0 \]

12436

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{k}-b \left (b -1\right )\right ) y = 0 \]

12437

\[ {} x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+x \ln \left (x \right )\right ) = 0 \]

12438

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

12439

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

12440

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y-x^{2} a = 0 \]

12441

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+a y = 0 \]

12442

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +a \right ) y = 0 \]

12443

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y = 0 \]

12444

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-v^{2}+x^{2}\right ) y-f \left (x \right ) = 0 \]

12445

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (l \,x^{2}-v^{2}\right ) y = 0 \]

12446

\[ {} -y+\left (x +a \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12447

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y-3 x^{3} = 0 \]

12448

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\left (a \,x^{m}+b \right ) y = 0 \]

12449

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime } = 0 \]

12450

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (a x -b^{2}\right ) y = 0 \]

12451

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2} a +b \right ) y = 0 \]

12452

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \]

12453

\[ {} x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0 \]

12454

\[ {} x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \]

12455

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y-x^{5} \ln \left (x \right ) = 0 \]

12456

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y-x \sin \left (x \right )-\left (x^{2} a +12 a +4\right ) \cos \left (x \right ) = 0 \]

12457

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

12458

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

12459

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

12460

\[ {} \left (a^{2} x^{2}+2\right ) y-2 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12461

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (-v^{2}+x^{2}+1\right ) y-f \left (x \right ) = 0 \]

12462

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

12463

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y-5 x = 0 \]

12464

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y-x^{2} \ln \left (x \right ) = 0 \]

12465

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y-x^{4}+x^{2} = 0 \]

12466

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }-\left (2 x^{3}-4\right ) y = 0 \]

12467

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y-x^{3} \sin \left (x \right ) = 0 \]

12468

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

12469

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

12470

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{m}+c \right ) y = 0 \]

12471

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0 \]

12472

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

12473

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

12474

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

12475

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

12476

\[ {} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12477

\[ {} x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

12478

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0 \]

12479

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (2+3 x \right ) y = 0 \]

12480

\[ {} x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \]

12481

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y = 0 \]

12482

\[ {} x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0 \]

12483

\[ {} 2 \left (1+x \right ) y-2 x \left (1+x \right ) y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12484

\[ {} -2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12485

\[ {} x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \]

12486

\[ {} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y = 0 \]

12487

\[ {} x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y = 0 \]

12488

\[ {} x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

12489

\[ {} x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

12490

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

12491

\[ {} x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

12492

\[ {} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

12493

\[ {} x^{2} y^{\prime \prime }+\left (x^{2} a +b \right ) x y^{\prime }+f \left (x \right ) y = 0 \]

12494

\[ {} x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y = 0 \]

12495

\[ {} x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y = 0 \]

12496

\[ {} x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y = 0 \]

12497

\[ {} x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (a +x \tan \left (x \right )\right ) y = 0 \]

12498

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y = 0 \]

12499

\[ {} x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (x f^{\prime }\left (x \right )+f \left (x \right )^{2}-f \left (x \right )+x^{2} a +b x +c \right ) y = 0 \]

12500

\[ {} x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y = 0 \]