6.164 Problems 16301 to 16400

Table 6.327: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16301

\[ {} y^{\prime } = 3 \sqrt {x +3} \]

16302

\[ {} y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

16303

\[ {} y^{\prime } = \frac {x}{\sqrt {x^{2}+5}} \]

16304

\[ {} y^{\prime } = \frac {1}{x^{2}+1} \]

16305

\[ {} y^{\prime } = {\mathrm e}^{-9 x^{2}} \]

16306

\[ {} x y^{\prime } = \sin \left (x \right ) \]

16307

\[ {} x y^{\prime } = \sin \left (x^{2}\right ) \]

16308

\[ {} y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right . \]

16309

\[ {} y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right . \]

16310

\[ {} y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right . \]

16311

\[ {} y^{\prime }+3 x y = 6 x \]

16312

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

16313

\[ {} y^{\prime }-y^{3} = 8 \]

16314

\[ {} x^{2} y^{\prime }+x y^{2} = x \]

16315

\[ {} y^{\prime }-y^{2} = x \]

16316

\[ {} y^{3}-25 y+y^{\prime } = 0 \]

16317

\[ {} \left (x -2\right ) y^{\prime } = 3+y \]

16318

\[ {} \left (y-2\right ) y^{\prime } = x -3 \]

16319

\[ {} y^{\prime }+2 y-y^{2} = -2 \]

16320

\[ {} y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x \]

16321

\[ {} y^{\prime } = 2 \sqrt {y} \]

16322

\[ {} y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2} \]

16323

\[ {} y^{\prime } = 3 x -\sin \left (x \right ) y \]

16324

\[ {} x y^{\prime } = \left (x -y\right )^{2} \]

16325

\[ {} y^{\prime } = \sqrt {x^{2}+1} \]

16326

\[ {} y^{\prime }+4 y = 8 \]

16327

\[ {} y^{\prime }+x y = 4 x \]

16328

\[ {} y^{\prime }+4 y = x^{2} \]

16329

\[ {} y^{\prime } = x y-3 x -2 y+6 \]

16330

\[ {} y^{\prime } = \sin \left (x +y\right ) \]

16331

\[ {} y y^{\prime } = {\mathrm e}^{x -3 y^{2}} \]

16332

\[ {} y^{\prime } = \frac {x}{y} \]

16333

\[ {} y^{\prime } = y^{2}+9 \]

16334

\[ {} y y^{\prime } x = y^{2}+9 \]

16335

\[ {} y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

16336

\[ {} \cos \left (y\right ) y^{\prime } = \sin \left (x \right ) \]

16337

\[ {} y^{\prime } = {\mathrm e}^{2 x -3 y} \]

16338

\[ {} y^{\prime } = \frac {x}{y} \]

16339

\[ {} y^{\prime } = 2 x -1+2 x y-y \]

16340

\[ {} y y^{\prime } = x y^{2}+x \]

16341

\[ {} y y^{\prime } = 3 \sqrt {x y^{2}+9 x} \]

16342

\[ {} y^{\prime } = x y-4 x \]

16343

\[ {} y^{\prime }-4 y = 2 \]

16344

\[ {} y y^{\prime } = x y^{2}-9 x \]

16345

\[ {} y^{\prime } = \sin \left (y\right ) \]

16346

\[ {} y^{\prime } = {\mathrm e}^{x +y^{2}} \]

16347

\[ {} y^{\prime } = 200 y-2 y^{2} \]

16348

\[ {} y^{\prime } = x y-4 x \]

16349

\[ {} y^{\prime } = x y-3 x -2 y+6 \]

16350

\[ {} y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2} \]

16351

\[ {} y^{\prime } = \tan \left (y\right ) \]

16352

\[ {} y^{\prime } = \frac {y}{x} \]

16353

\[ {} y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y} \]

16354

\[ {} \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

16355

\[ {} \left (y^{2}-1\right ) y^{\prime } = 4 x y^{2} \]

16356

\[ {} y^{\prime } = {\mathrm e}^{-y} \]

16357

\[ {} y^{\prime } = {\mathrm e}^{-y}+1 \]

16358

\[ {} y^{\prime } = 3 x y^{3} \]

16359

\[ {} y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}} \]

16360

\[ {} y^{\prime }-3 x^{2} y^{2} = -3 x^{2} \]

16361

\[ {} y^{\prime }-3 x^{2} y^{2} = 3 x^{2} \]

16362

\[ {} y^{\prime } = 200 y-2 y^{2} \]

16363

\[ {} y^{\prime }-2 y = -10 \]

16364

\[ {} y y^{\prime } = \sin \left (x \right ) \]

16365

\[ {} y^{\prime } = 2 x -1+2 x y-y \]

16366

\[ {} x y^{\prime } = y^{2}-y \]

16367

\[ {} x y^{\prime } = y^{2}-y \]

16368

\[ {} y^{\prime } = \frac {y^{2}-1}{x y} \]

16369

\[ {} \left (y^{2}-1\right ) y^{\prime } = 4 x y \]

16370

\[ {} x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

16371

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

16372

\[ {} y^{\prime }-x y^{2} = \sqrt {x} \]

16373

\[ {} y^{\prime } = 1+\left (x y+3 y\right )^{2} \]

16374

\[ {} y^{\prime } = 1+x y+3 y \]

16375

\[ {} y^{\prime } = 4 y+8 \]

16376

\[ {} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

16377

\[ {} y^{\prime } = \sin \left (x \right ) y \]

16378

\[ {} y^{\prime }+4 y = y^{3} \]

16379

\[ {} x y^{\prime }+\cos \left (x^{2}\right ) = 827 y \]

16380

\[ {} 2 y+y^{\prime } = 6 \]

16381

\[ {} 2 y+y^{\prime } = 20 \,{\mathrm e}^{3 x} \]

16382

\[ {} y^{\prime } = 4 y+16 x \]

16383

\[ {} y^{\prime }-2 x y = x \]

16384

\[ {} x y^{\prime }+3 y-10 x^{2} = 0 \]

16385

\[ {} 2 x y+x^{2} y^{\prime } = \sin \left (x \right ) \]

16386

\[ {} x y^{\prime } = \sqrt {x}+3 y \]

16387

\[ {} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = \cos \left (x \right )^{2} \]

16388

\[ {} x y^{\prime }+\left (5 x +2\right ) y = \frac {20}{x} \]

16389

\[ {} 2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}} \]

16390

\[ {} y^{\prime }-3 y = 6 \]

16391

\[ {} y^{\prime }-3 y = 6 \]

16392

\[ {} y^{\prime }+5 y = {\mathrm e}^{-3 x} \]

16393

\[ {} x y^{\prime }+3 y = 20 x^{2} \]

16394

\[ {} x y^{\prime } = y+x^{2} \cos \left (x \right ) \]

16395

\[ {} \left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right ) \]

16396

\[ {} y^{\prime }+6 x y = \sin \left (x \right ) \]

16397

\[ {} x y+x^{2} y^{\prime } = \sqrt {x}\, \sin \left (x \right ) \]

16398

\[ {} x y^{\prime }-y = x^{2} {\mathrm e}^{-x^{2}} \]

16399

\[ {} y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}} \]

16400

\[ {} y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2} \]