| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = 3 \sqrt {x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \,{\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{\sqrt {x^{2}+5}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-9 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \sin \left (x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left \{\begin {array}{cc} 0 & x <0 \\ 1 & 0\le x \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left \{\begin {array}{cc} 0 & x <1 \\ 1 & 1\le x <2 \\ 0 & 2\le x \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 x y = 6 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x +y\right )-y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-y^{3} = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+x y^{2} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y^{2} = x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3}-25 y+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2\right ) y^{\prime } = 3+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-2\right ) y^{\prime } = x -3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y-y^{2} = -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\left (8-x \right ) y-y^{2} = -8 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x -\sin \left (x \right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \left (x -y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = 8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = 4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y-3 x -2 y+6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = {\mathrm e}^{x -3 y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}+9
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = y^{2}+9
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y\right ) y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{2 x -3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -1+2 x y-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = x y^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = 3 \sqrt {x y^{2}+9 x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x y-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = x y^{2}-9 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x +y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 200 y-2 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y-3 x -2 y+6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y^{2}-\sin \left (x \right ) y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {6 x^{2}+4}{3 y^{2}-4 y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime } = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{2}-1\right ) y^{\prime } = 4 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-y}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2+\sqrt {x}}{2+\sqrt {y}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-3 x^{2} y^{2} = -3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 x^{2} y^{2} = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 200 y-2 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 y = -10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -1+2 x y-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}-1}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{2}-1\right ) y^{\prime } = 4 x y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }-x y^{2} = \sqrt {x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+\left (x y+3 y\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+x y+3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y+8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-{\mathrm e}^{2 x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+\cos \left (x^{2}\right ) = 827 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+y^{\prime } = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = 20 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y+16 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+3 y-10 x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+x^{2} y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = \sqrt {x}+3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+\left (5 x +2\right ) y = \frac {20}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \sqrt {x}\, y^{\prime }+y = 2 x \,{\mathrm e}^{-\sqrt {x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+5 y = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+3 y = 20 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y+x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime } = x \left (3+3 x^{2}-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+6 x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+x^{2} y^{\prime } = \sqrt {x}\, \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = x^{2} {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (3 x -2 y\right )^{2}+1}{3 x -2 y}+\frac {3}{2}
\]
|
✓ |
✓ |
✓ |
|