| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+\left (y-x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-x y = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (\frac {y}{x}\right ) \left (y^{\prime }-\frac {y}{x}\right ) = 1+\sin \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y}{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 y = 3 y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {3 y}{x} = \frac {y^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 y \cot \left (x \right ) = 6 \cos \left (x \right ) y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {y}{x} = \frac {1}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime } = -2+\sqrt {2 x +3 y+4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime }+\frac {2 y}{x} = 4 \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x \right ) y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {y}{x} = x^{2} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 \sqrt {2 x +y-3}-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 \sqrt {2 x +y-3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \sqrt {x^{2}+x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 y = \frac {28 \,{\mathrm e}^{2 x}}{y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x -y+3\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x = 2 \sqrt {y+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (y\right ) y^{\prime } = {\mathrm e}^{-x}-\sin \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \left (1+\frac {2 y}{x^{2}}+\frac {y^{2}}{x^{4}}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{y}-\frac {y}{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x y^{2}-x^{2}} \left (y^{2}-2 x \right )+2 \,{\mathrm e}^{x y^{2}-x^{2}} x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{3}+4 x^{3}+3 x^{2} y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2-2 x +3 y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+3 x^{2} y^{2}+\left (2 x^{3} y+6 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+\ln \left (x y\right )+\frac {x y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y}+\left (x \,{\mathrm e}^{y}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{4}+x y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (y^{4}-3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {2 y}{x}+\left (4 x^{2} y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+\left (1-x \tan \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+3 y^{2}+\left (2 x +4 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (1+y\right )-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{3}+\left (4 x^{3} y^{3}-3 x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x y+\left (3 x^{2}+5 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 6+12 x^{2} y^{2}+\left (7 x^{3} y+\frac {x}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 y-6 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 y^{2}-6 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{2}-x^{2} y^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }-\sqrt {x} = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x -y^{2} = \sqrt {x^{2} y^{2}+x^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-2 x y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x y-6+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}-6+x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+y^{3}+x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y-x^{3}+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+2 x y^{2}+\left (2 x^{2} y+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{3}-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2+2 x^{2}-2 x y+\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y^{2}-4\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x y-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 y}{1+x}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+2 \cos \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = 2 x^{2}+2 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y+x}{x +2 y+3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y+x}{2 x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{2}+3 y^{2}+x +3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-\left (2 y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+1-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x = x^{2}+x y+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +2\right ) y^{\prime }-x^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{3} y^{\prime } = y^{4}-x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-6 x +y^{\prime } \left (1+x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}-y^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{4 x +3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \tan \left (6 x +3 y+1\right )-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{4 x +3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+4 y^{\prime } = 18 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = 2 y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|