6.180 Problems 17901 to 18000

Table 6.359: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17901

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

17902

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

17903

\[ {} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

17904

\[ {} 3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

17905

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

17906

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

17907

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

17908

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

17909

\[ {} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

17910

\[ {} 4 x^{\prime \prime }+9 x = 0 \]

17911

\[ {} 9 x^{\prime \prime }+4 x = 0 \]

17912

\[ {} x^{\prime \prime }+64 x = 0 \]

17913

\[ {} x^{\prime \prime }+100 x = 0 \]

17914

\[ {} x^{\prime \prime }+x = 0 \]

17915

\[ {} x^{\prime \prime }+4 x = 0 \]

17916

\[ {} x^{\prime \prime }+16 x = 0 \]

17917

\[ {} x^{\prime \prime }+256 x = 0 \]

17918

\[ {} x^{\prime \prime }+9 x = 0 \]

17919

\[ {} 10 x^{\prime \prime }+\frac {x}{10} = 0 \]

17920

\[ {} x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

17921

\[ {} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

17922

\[ {} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

17923

\[ {} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

17924

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

17925

\[ {} x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

17926

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17927

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17928

\[ {} x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

17929

\[ {} x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17930

\[ {} x^{\prime \prime }+x = \cos \left (t \right ) \]

17931

\[ {} x^{\prime \prime }+x = \cos \left (t \right ) \]

17932

\[ {} x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

17933

\[ {} x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

17934

\[ {} x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

17935

\[ {} [x^{\prime }\left (t \right ) = 6, y^{\prime }\left (t \right ) = \cos \left (t \right )] \]

17936

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 1] \]

17937

\[ {} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

17938

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = {\mathrm e}^{t}] \]

17939

\[ {} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 1] \]

17940

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )] \]

17941

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

17942

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )] \]

17943

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17944

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

17945

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 1-x \left (t \right )] \]

17946

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\sin \left (2 t \right )] \]

17947

\[ {} x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

17948

\[ {} x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

17949

\[ {} x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

17950

\[ {} x^{\prime \prime }+x = {\mathrm e}^{t} \]

17951

\[ {} y^{\prime } = x^{2}+y^{2} \]

17952

\[ {} y^{\prime } = \frac {x}{y} \]

17953

\[ {} y^{\prime } = y+3 y^{{1}/{3}} \]

17954

\[ {} y^{\prime } = \sqrt {x -y} \]

17955

\[ {} y^{\prime } = \sqrt {-y+x^{2}}-x \]

17956

\[ {} y^{\prime } = \sqrt {1-y^{2}} \]

17957

\[ {} y^{\prime } = \frac {1+y}{x -y} \]

17958

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

17959

\[ {} y^{\prime } = 1-\cot \left (y\right ) \]

17960

\[ {} y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

17961

\[ {} y^{\prime } = \sin \left (x y\right ) \]

17962

\[ {} x y^{\prime }+y = \cos \left (x \right ) \]

17963

\[ {} 2 y+y^{\prime } = {\mathrm e}^{x} \]

17964

\[ {} y^{\prime } \left (-x^{2}+1\right )+x y = 2 x \]

17965

\[ {} y^{\prime } = 1+x \]

17966

\[ {} y^{\prime } = x +y \]

17967

\[ {} y^{\prime } = y-x \]

17968

\[ {} y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

17969

\[ {} y^{\prime } = \left (y-1\right )^{2} \]

17970

\[ {} y^{\prime } = x \left (y-1\right ) \]

17971

\[ {} y^{\prime } = x^{2}-y^{2} \]

17972

\[ {} y^{\prime } = \cos \left (x -y\right ) \]

17973

\[ {} y^{\prime } = y-x^{2} \]

17974

\[ {} y^{\prime } = x^{2}+2 x -y \]

17975

\[ {} y^{\prime } = \frac {1+y}{x -1} \]

17976

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

17977

\[ {} y^{\prime } = 1-x \]

17978

\[ {} y^{\prime } = 2 x -y \]

17979

\[ {} y^{\prime } = y+x^{2} \]

17980

\[ {} y^{\prime } = -\frac {y}{x} \]

17981

\[ {} y^{\prime } = 1 \]

17982

\[ {} y^{\prime } = \frac {1}{x} \]

17983

\[ {} y^{\prime } = y \]

17984

\[ {} y^{\prime } = y^{2} \]

17985

\[ {} y^{\prime } = x^{2}-y^{2} \]

17986

\[ {} y^{\prime } = x +y^{2} \]

17987

\[ {} y^{\prime } = x +y \]

17988

\[ {} y^{\prime } = 2 y-2 x^{2}-3 \]

17989

\[ {} x y^{\prime } = 2 x -y \]

17990

\[ {} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

17991

\[ {} y y^{\prime } x +1+y^{2} = 0 \]

17992

\[ {} y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0 \]

17993

\[ {} 1+y^{2} = x y^{\prime } \]

17994

\[ {} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

17995

\[ {} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

17996

\[ {} {\mathrm e}^{-y} y^{\prime } = 1 \]

17997

\[ {} y \ln \left (y\right )+x y^{\prime } = 1 \]

17998

\[ {} y^{\prime } = a^{x +y} \]

17999

\[ {} {\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

18000

\[ {} 2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]