| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 y-4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime \prime }+11 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1+x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 4 x^{\prime \prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+64 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+100 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+16 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+256 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 10 x^{\prime \prime }+\frac {x}{10} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{\prime \prime }+2 x^{\prime }+8 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+13 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+20 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right .
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 6, y^{\prime }\left (t \right ) = \cos \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = -2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = {\mathrm e}^{t}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 1-x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\sin \left (2 t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+6 x^{\prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+16 x = t \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+3 y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {-y+x^{2}}-x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y}{x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (y\right )-\cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 1-\cot \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )+x y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{2}-y+\frac {3}{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \left (y-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y}{x -1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y}{x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x +y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-2 x^{2}-3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +1+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{-y} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \ln \left (y\right )+x y^{\prime } = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a^{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|