6.179 Problems 17801 to 17900

Table 6.357: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17801

\[ {} \left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

17802

\[ {} \left (2+3 x \right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

17803

\[ {} \left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

17804

\[ {} \left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

17805

\[ {} y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

17806

\[ {} \left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

17807

\[ {} \left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

17808

\[ {} y^{\prime \prime }-4 x^{2} y = 0 \]

17809

\[ {} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

17810

\[ {} y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

17811

\[ {} y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

17812

\[ {} y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

17813

\[ {} y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

17814

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

17815

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

17816

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

17817

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

17818

\[ {} y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right ) \]

17819

\[ {} x^{2} y^{\prime \prime }+6 y = 0 \]

17820

\[ {} x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

17821

\[ {} \left (x^{2}-3 x -4\right ) y^{\prime \prime }-y^{\prime } \left (1+x \right )+y \left (x^{2}-1\right ) = 0 \]

17822

\[ {} \left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (x +5\right ) y^{\prime }+10 y = 0 \]

17823

\[ {} 2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

17824

\[ {} 5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

17825

\[ {} 9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

17826

\[ {} 7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

17827

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

17828

\[ {} x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

17829

\[ {} y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

17830

\[ {} y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

17831

\[ {} y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

17832

\[ {} y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

17833

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

17834

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

17835

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

17836

\[ {} y^{\prime \prime }+x y = 0 \]

17837

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

17838

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (1+k \right ) y = 0 \]

17839

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

17840

\[ {} \left (1-x \right ) x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

17841

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

17842

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

17843

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

17844

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

17845

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

17846

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17847

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17848

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

17849

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

17850

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

17851

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

17852

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

17853

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

17854

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

17855

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

17856

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

17857

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

17858

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

17859

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

17860

\[ {} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

17861

\[ {} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

17862

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

17863

\[ {} y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

17864

\[ {} y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

17865

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

17866

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

17867

\[ {} y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

17868

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

17869

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

17870

\[ {} y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

17871

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

17872

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

17873

\[ {} y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

17874

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

17875

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

17876

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

17877

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

17878

\[ {} y^{\prime \prime }+16 y = 0 \]

17879

\[ {} y^{\prime \prime }+25 y = 0 \]

17880

\[ {} y^{\prime \prime }-4 y = t \]

17881

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

17882

\[ {} y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

17883

\[ {} y^{\prime \prime }+y = \cos \left (t \right ) \]

17884

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

17885

\[ {} y^{\prime \prime }+y = \csc \left (t \right ) \]

17886

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

17887

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

17888

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

17889

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

17890

\[ {} y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

17891

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

17892

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17893

\[ {} t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

17894

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

17895

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

17896

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17897

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

17898

\[ {} 5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

17899

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

17900

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]