6.219 Problems 21801 to 21900

Table 6.437: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

21801

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

21802

\[ {} -y+y^{\prime \prime } = 0 \]

21803

\[ {} 2 \left (1-x \right ) y^{\prime \prime }+y^{\prime } \left (1+x \right )+\left (x -3-\left (x -1\right )^{2} {\mathrm e}^{x}\right ) y = 0 \]

21804

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

21805

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

21806

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

21807

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1-2 x \right ) y = 0 \]

21808

\[ {} x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (x^{2}+x +1\right ) y = 0 \]

21809

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

21810

\[ {} 3 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

21811

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-\lambda y = 0 \]

21812

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-p^{2}+x^{2}\right ) y = 0 \]

21813

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

21814

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

21815

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{3} \]

21816

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right ) \]

21817

\[ {} x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+x y^{\prime }-y = -\ln \left (x \right ) \]

21818

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+p y = 0 \]

21819

\[ {} y^{\prime }-5 y = 0 \]

21820

\[ {} y^{\prime }-5 y = 0 \]

21821

\[ {} y^{\prime }-5 y = {\mathrm e}^{5 t} \]

21822

\[ {} y+y^{\prime } = t \]

21823

\[ {} -2 y+y^{\prime } = {\mathrm e}^{5 t} \]

21824

\[ {} y+y^{\prime } = \sin \left (t \right ) \]

21825

\[ {} y^{\prime }+2 y = \cos \left (t \right ) \]

21826

\[ {} y^{\prime }+b y = 1 \]

21827

\[ {} y^{\prime }+2 y = {\mathrm e}^{-t} \]

21828

\[ {} y^{\prime \prime }+y = 0 \]

21829

\[ {} y^{\prime \prime }+4 y = 0 \]

21830

\[ {} y^{\prime \prime }+4 y^{\prime }+8 y = \sin \left (t \right ) \]

21831

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-t} \]

21832

\[ {} y^{\prime \prime }+2 y^{\prime }+y = t \]

21833

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & t <1 \\ 2 & 1\le t \end {array}\right . \]

21834

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & t <6 \\ 1 & 6\le t \end {array}\right . \]

21835

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 4 t & 0\le t \le 1 \\ 4 & 1<t \end {array}\right . \]

21836

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

21837

\[ {} y^{\prime \prime \prime }+y^{\prime } = {\mathrm e}^{t} \]

21838

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+2 y = 10 \cos \left (t \right ) \]

21839

\[ {} [x^{\prime }\left (t \right )-6 x \left (t \right )+3 y \left (t \right ) = 8 \,{\mathrm e}^{t}, y^{\prime }\left (t \right )-2 x \left (t \right )-y \left (t \right ) = 4 \,{\mathrm e}^{t}] \]

21840

\[ {} [y^{\prime }\left (t \right )+z \left (t \right ) = t, z^{\prime }\left (t \right )+4 y \left (t \right ) = 0] \]

21841

\[ {} [w^{\prime }\left (t \right )+y \left (t \right ) = \sin \left (t \right ), y^{\prime }\left (t \right )-z \left (t \right ) = {\mathrm e}^{t}, w \left (t \right )+y \left (t \right )+z^{\prime }\left (t \right ) = 1] \]

21842

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

21843

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

21844

\[ {} 4 y+y^{\prime \prime } = 0 \]

21845

\[ {} 4 y+y^{\prime \prime } = 0 \]

21846

\[ {} 4 y+y^{\prime \prime } = 0 \]

21847

\[ {} y^{\prime \prime }+y = 0 \]

21848

\[ {} \sqrt {1-y^{2}}+\left (2 y+x \right ) y^{\prime } = 0 \]

21849

\[ {} \left [y^{\prime }\left (t \right ) = -\sqrt {1-y \left (t \right )^{2}}, x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )\right ] \]

21850

\[ {} y^{\prime \prime } \cos \left (y\right )+\left (\cos \left (y\right )-y^{\prime } \sin \left (y\right )\right ) y^{\prime }-2 x y = 0 \]

21851

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+12 y \left (t \right )] \]

21852

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )] \]

21853

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )] \]

21854

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right )] \]

21855

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )+y \left (t \right )] \]

21856

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )] \]

21857

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-y \left (t \right )+6 z \left (t \right ), y^{\prime }\left (t \right ) = -10 x \left (t \right )+4 y \left (t \right )-12 z \left (t \right ), z^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

21858

\[ {} [x \left (t \right )+y^{\prime }\left (t \right ) = \sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )-\sin \left (t \right )] \]

21859

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

21860

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+y \left (t \right )] \]

21861

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

21862

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )] \]

21863

\[ {} [2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{2 t}, x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = 0] \]

21864

\[ {} [y^{\prime }\left (t \right ) = y \left (t \right )-3 z \left (t \right ), z^{\prime }\left (t \right ) = 2 y \left (t \right )-4 z \left (t \right )] \]

21865

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+4 y \left (t \right )] \]

21866

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-y \left (t \right )+6 z \left (t \right ), y^{\prime }\left (t \right ) = -10 x \left (t \right )+4 y \left (t \right )-12 z \left (t \right ), z^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

21867

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right )+3 y \left (t \right )-z \left (t \right )] \]

21868

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = 3 y \left (t \right )+z \left (t \right )] \]

21869

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )+1] \]

21870

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )-5 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right )-4] \]

21871

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )+3 \,{\mathrm e}^{2 t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+2 y \left (t \right )+t \,{\mathrm e}^{2 t}] \]

21872

\[ {} 2 x^{4} y y^{\prime }+y^{4} = 4 x^{6} \]

21873

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

21874

\[ {} {y^{\prime \prime }}^{2} x^{2} \left (x^{2}-1\right )-1 = 0 \]

21875

\[ {} x y^{\prime \prime }-{y^{\prime }}^{3}-y^{\prime } = 0 \]

21876

\[ {} y^{\prime } = x y^{\prime \prime }+{y^{\prime \prime }}^{2} \]

21877

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

21878

\[ {} 2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

21879

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

21880

\[ {} y^{\prime \prime }-\frac {2 {y^{\prime }}^{2}}{y}-y = 0 \]

21881

\[ {} 1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

21882

\[ {} x = y-{y^{\prime }}^{2} \]

21883

\[ {} y = 2 x y^{\prime }-{y^{\prime }}^{2} \]

21884

\[ {} y = 2 x +y^{\prime }-\frac {{y^{\prime }}^{3}}{3} \]

21885

\[ {} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

21886

\[ {} x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0 \]

21887

\[ {} y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

21888

\[ {} x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +3 y^{2} = 0 \]

21889

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

21890

\[ {} y {y^{\prime }}^{2}-\left (x y+x +y^{2}\right ) y^{\prime }+x^{2}+x y = 0 \]

21891

\[ {} 2 {y^{\prime }}^{2}-2 y y^{\prime }-1 = 0 \]

21892

\[ {} \left ({y^{\prime }}^{2}-y^{2}\right ) {\mathrm e}^{y^{\prime }}-x {y^{\prime }}^{2}+x y^{2} = 0 \]

21893

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-8 y \left (t \right )] \]

21894

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+6 y \left (t \right )] \]

21895

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+4 y \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )-y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

21896

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = \sin \left (2 x \left (t \right )\right )-5 y \left (t \right )] \]

21897

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )] \]

21898

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{2}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21899

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21900

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )^{2}-x \left (t \right )^{2}] \]