4.24.53 Problems 5201 to 5300

Table 4.1457: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

23350

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y y^{\prime } = 0 \]

23351

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{y^{3}} = 0 \]

23352

\[ {} y^{\prime \prime } = \frac {1+{y^{\prime }}^{2}}{y} \]

23353

\[ {} y^{\prime \prime } = y^{\prime } \left (1+{y^{\prime }}^{2}\right ) \]

23354

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

23355

\[ {} y^{\prime \prime }+x y = 0 \]

23356

\[ {} y^{\prime \prime \prime }+x^{2} y = {\mathrm e}^{x} \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]

23358

\[ {} y^{\prime \prime }+\cos \left (y\right ) = 0 \]

23360

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

23362

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

23363

\[ {} x^{2} y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }-2 = 0 \]

23365

\[ {} y^{\prime \prime }+x y = x \]

23366

\[ {} 2 y-3 x y^{\prime \prime }+4 y^{\prime } = 0 \]

23371

\[ {} x y^{\prime \prime \prime }+4 x y^{\prime \prime }-x y = 1 \]

23373

\[ {} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0 \]

23390

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

23393

\[ {} x y^{\prime \prime }-3 y^{\prime }-5 y = 0 \]

23394

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23395

\[ {} \left (x -a \right ) \left (x -b \right ) y^{\prime \prime }+2 \left (2 x -a -b \right ) y^{\prime }+2 y = 0 \]

23398

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

23400

\[ {} x y^{\prime \prime }+4 y^{\prime } = 0 \]

23401

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

23402

\[ {} y^{\prime \prime }+x y = 0 \]

23403

\[ {} y+x y^{\prime \prime } = 0 \]

23404

\[ {} y+x y^{\prime \prime } = 0 \]

23405

\[ {} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23406

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2 \]

23407

\[ {} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0 \]

23408

\[ {} y y^{\prime }+y^{\prime \prime } = 2 \]

23410

\[ {} y^{\prime \prime } \cos \left (x \right )+3 y = 1 \]

23411

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0 \]

23412

\[ {} \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } = 0 \]

23413

\[ {} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x} \]

23414

\[ {} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0 \]

23415

\[ {} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right ) \]

23416

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0 \]

23484

\[ {} 5 x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

23485

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23486

\[ {} 3 x^{2} y^{\prime \prime }+4 x y^{\prime }+y = 0 \]

23487

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

23488

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

23489

\[ {} \left (x -1\right )^{2} y^{\prime \prime }+5 \left (x -1\right ) y^{\prime }+4 y = 0 \]

23490

\[ {} -3 y+x y^{\prime }+2 x^{2} y^{\prime \prime } = 0 \]

23491

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

23492

\[ {} 2 y-2 x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23493

\[ {} x^{2} y^{\prime \prime }+\frac {7 x y^{\prime }}{2}-\frac {3 y}{2} = 0 \]

23494

\[ {} \left (x +3\right )^{2} y^{\prime \prime }+3 \left (x +3\right ) y^{\prime }+5 y = 0 \]

23495

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+y = 0 \]

23496

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

23497

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23498

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23499

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

23500

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

23501

\[ {} x^{2} y^{\prime \prime }+\frac {7 x y^{\prime }}{2}-\frac {3 y}{2} = 0 \]

23502

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23503

\[ {} 3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

23504

\[ {} x^{4} y^{\prime \prime \prime \prime }-5 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23505

\[ {} 2 x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

23506

\[ {} 2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-12 x y^{\prime }-2 y = 0 \]

23507

\[ {} x^{5} y^{\left (5\right )}-2 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime } = 0 \]

23508

\[ {} 7 x^{4} y^{\prime \prime \prime \prime }-2 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23509

\[ {} x^{5} y^{\left (5\right )}+3 x^{3} y^{\prime \prime \prime }-9 x^{2} y^{\prime \prime }+18 x y^{\prime }-18 y = 0 \]

23510

\[ {} x^{6} y^{\left (6\right )}-12 x^{4} y^{\prime \prime \prime \prime } = 0 \]

23511

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

23512

\[ {} y^{\prime \prime }-\frac {5 y^{\prime }}{x}+\frac {5 y}{x^{2}} = 0 \]

23513

\[ {} x y^{\prime \prime \prime }-\frac {6 y}{x^{2}} = 0 \]

23514

\[ {} x^{2} y^{\prime \prime \prime \prime }-x y^{\prime \prime \prime } = 0 \]

23515

\[ {} 3 x y^{\prime \prime }-4 y^{\prime }+\frac {5 y}{x} = 0 \]

23516

\[ {} \left (x -4\right ) y^{\prime \prime }+4 y^{\prime }-\frac {4 y}{x -4} = 0 \]

23517

\[ {} \left (x +2\right ) y^{\prime \prime }-y^{\prime }+\frac {y}{x +2} = 0 \]

23518

\[ {} y^{\prime \prime }+\frac {5 y^{\prime }}{x -1}+\frac {4 y}{\left (x -1\right )^{2}} = 0 \]

23519

\[ {} 5 y^{\prime \prime }+\frac {3 y^{\prime }}{x -3}+\frac {3 y}{\left (x -3\right )^{2}} = 0 \]

23520

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

23521

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2}-x \right ) y^{\prime }-2 x y = 0 \]

23522

\[ {} x^{3} y^{\prime \prime }+\left (5 x^{3}-x^{2}\right ) y^{\prime }+2 \left (3 x^{3}-x^{2}\right ) y = 0 \]

23523

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }-y = 0 \]

23524

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

23525

\[ {} x y^{\prime \prime }+\left (x -1\right ) y^{\prime }+\left (3-12 x \right ) y = 0 \]

23526

\[ {} x^{2} \left (1-\ln \left (x \right )\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

23527

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {9 y}{x^{4}} = 0 \]

23528

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

23529

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

23530

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

23531

\[ {} x \left (x -2\right ) y^{\prime \prime }-2 \left (x^{2}-3 x +3\right ) y^{\prime }+\left (x^{2}-4 x +6\right ) y = 0 \]

23532

\[ {} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y = 0 \]

23533

\[ {} y^{\prime \prime }-\left (1+\frac {3}{2 x}\right ) y^{\prime }+\frac {3 y}{2 x^{2}} = 0 \]

23534

\[ {} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = 0 \]

23535

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23536

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

23537

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

23538

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

23539

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

23540

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23541

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+3 y = 0 \]

23542

\[ {} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

23543

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

23544

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

23545

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

23546

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]