5.3.47 Problems 4601 to 4700

Table 5.139: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

13346

\[ {} y^{\prime } = y^{2}+a \sinh \left (\beta x \right ) y+a b \sinh \left (\beta x \right )-b^{2} \]

13347

\[ {} y^{\prime } = y^{2}+a x \sinh \left (b x \right )^{m} y+a \sinh \left (b x \right )^{m} \]

13348

\[ {} y^{\prime } = \lambda \sinh \left (\lambda x \right ) y^{2}-\lambda \sinh \left (\lambda x \right )^{3} \]

13349

\[ {} y^{\prime } = \left (a \sinh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}-a \sinh \left (\lambda x \right )^{2}+\lambda -a \]

13350

\[ {} \left (\sinh \left (\lambda x \right ) a +b \right ) y^{\prime } = y^{2}+c \sinh \left (x \mu \right ) y-d^{2}+c d \sinh \left (x \mu \right ) \]

13351

\[ {} \left (\sinh \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \sinh \left (\lambda x \right ) = 0 \]

13352

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \cosh \left (x \right ) \]

13353

\[ {} y^{\prime } = y^{2}+a \cosh \left (\beta x \right ) y+a b \cosh \left (\beta x \right )-b^{2} \]

13354

\[ {} y^{\prime } = y^{2}+a x \cosh \left (b x \right )^{m} y+a \cosh \left (b x \right )^{m} \]

13355

\[ {} y^{\prime } = \left (a \cosh \left (\lambda x \right )^{2}-\lambda \right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right )^{2} \]

13356

\[ {} 2 y^{\prime } = \left (a -\lambda +a \cosh \left (\lambda x \right )\right ) y^{2}+a +\lambda -a \cosh \left (\lambda x \right ) \]

13357

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+a \cosh \left (\lambda x \right )^{n} \sinh \left (\lambda x \right )^{-n -4} \]

13358

\[ {} y^{\prime } = a \sinh \left (\lambda x \right ) y^{2}+b \sinh \left (\lambda x \right ) \cosh \left (\lambda x \right )^{n} \]

13359

\[ {} y^{\prime } = a \cosh \left (\lambda x \right ) y^{2}+b \cosh \left (\lambda x \right ) \sinh \left (\lambda x \right )^{n} \]

13360

\[ {} \left (a \cosh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cosh \left (x \mu \right ) y-d^{2}+c d \cosh \left (x \mu \right ) \]

13361

\[ {} \left (a \cosh \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )+a \,\lambda ^{2} \cosh \left (\lambda x \right ) = 0 \]

13362

\[ {} y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

13363

\[ {} y^{\prime } = y^{2}+3 a \lambda -\lambda ^{2}-a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2} \]

13364

\[ {} y^{\prime } = y^{2}+a x \tanh \left (b x \right )^{m} y+a \tanh \left (b x \right )^{m} \]

13365

\[ {} \left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \tanh \left (x \mu \right ) y-d^{2}+c d \tanh \left (x \mu \right ) \]

13366

\[ {} y^{\prime } = y^{2}+a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13367

\[ {} y^{\prime } = y^{2}-\lambda ^{2}+3 a \lambda -a \left (a +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13368

\[ {} y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

13369

\[ {} \left (a \coth \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \coth \left (x \mu \right ) y-d^{2}+c d \coth \left (x \mu \right ) \]

13370

\[ {} y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

13371

\[ {} y^{\prime } = y^{2}+a \lambda +b \lambda -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

13372

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \]

13373

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )+c \]

13374

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2+2 k} \]

13375

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \]

13376

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1} \]

13377

\[ {} x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \]

13378

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

13379

\[ {} x^{2} y^{\prime } = x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \]

13380

\[ {} x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

13382

\[ {} y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

13383

\[ {} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

13384

\[ {} y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

13385

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

13386

\[ {} y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13387

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \]

13389

\[ {} x y^{\prime } = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

13390

\[ {} x y^{\prime } = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

13391

\[ {} x y^{\prime } = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

13392

\[ {} x^{2} y^{\prime } = y^{2} a^{2} x^{2}-x y+b^{2} \ln \left (x \right )^{n} \]

13393

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \]

13394

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = \ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+\lambda c \]

13395

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

13396

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]

13397

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4} \]

13398

\[ {} y^{\prime } = y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \]

13399

\[ {} y^{\prime } = y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m} \]

13400

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \]

13401

\[ {} 2 y^{\prime } = \left (\lambda +a -\sin \left (\lambda x \right ) a \right ) y^{2}+\lambda -a -\sin \left (\lambda x \right ) a \]

13402

\[ {} y^{\prime } = \left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \]

13403

\[ {} y^{\prime } = -\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m} \]

13404

\[ {} y^{\prime } = a \sin \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13405

\[ {} x y^{\prime } = a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m} \]

13406

\[ {} \left (\sin \left (\lambda x \right ) a +b \right ) y^{\prime } = y^{2}+c \sin \left (x \mu \right ) y-d^{2}+c d \sin \left (x \mu \right ) \]

13407

\[ {} \left (\sin \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right ) = 0 \]

13408

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \]

13409

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \cos \left (\lambda x \right )+a^{2} \cos \left (\lambda x \right )^{2} \]

13410

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \cos \left (\lambda x +a \right )^{n} \cos \left (\lambda x +b \right )^{-n -4} \]

13411

\[ {} y^{\prime } = y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \]

13412

\[ {} y^{\prime } = y^{2}+a \cos \left (b x \right )^{m} y+a \cos \left (b x \right )^{m} \]

13413

\[ {} y^{\prime } = \lambda \cos \left (\lambda x \right ) y^{2}+\lambda \cos \left (\lambda x \right )^{3} \]

13414

\[ {} 2 y^{\prime } = \left (\lambda +a -\cos \left (\lambda x \right ) a \right ) y^{2}+\lambda -a -\cos \left (\lambda x \right ) a \]

13415

\[ {} y^{\prime } = \left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \]

13416

\[ {} y^{\prime } = -\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \]

13417

\[ {} y^{\prime } = a \cos \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13418

\[ {} x y^{\prime } = a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \]

13419

\[ {} \left (\cos \left (\lambda x \right ) a +b \right ) y^{\prime } = y^{2}+c \cos \left (x \mu \right ) y-d^{2}+c d \cos \left (x \mu \right ) \]

13420

\[ {} \left (\cos \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \cos \left (\lambda x \right ) = 0 \]

13421

\[ {} y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

13422

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

13423

\[ {} y^{\prime } = a y^{2}+b \tan \left (x \right ) y+c \]

13425

\[ {} y^{\prime } = y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2} \]

13426

\[ {} y^{\prime } = y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \]

13427

\[ {} y^{\prime } = -\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m} \]

13428

\[ {} y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \]

13429

\[ {} y^{\prime } = a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13430

\[ {} x y^{\prime } = a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m} \]

13431

\[ {} \left (a \tan \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+k \tan \left (x \mu \right ) y-d^{2}+k d \tan \left (x \mu \right ) \]

13432

\[ {} y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

13433

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

13434

\[ {} y^{\prime } = y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \]

13435

\[ {} y^{\prime } = y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2} \]

13436

\[ {} y^{\prime } = y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \]

13437

\[ {} y^{\prime } = -\left (1+k \right ) x^{k} y^{2}+a \,x^{1+k} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \]

13438

\[ {} y^{\prime } = a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

13439

\[ {} x y^{\prime } = a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m} \]

13440

\[ {} \left (a \cot \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cot \left (x \mu \right ) y-d^{2}+c d \cot \left (x \mu \right ) \]

13441

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x \right )^{n} \cos \left (\lambda x \right )^{-n -4} \]

13442

\[ {} y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n} \]

13443

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \cos \left (\lambda x \right )^{n} y-a \cos \left (\lambda x \right )^{n -1} \]

13444

\[ {} y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \]

13445

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

13446

\[ {} \sin \left (2 x \right )^{n +1} y^{\prime } = a y^{2} \sin \left (x \right )^{2 n}+b \cos \left (x \right )^{2 n} \]

13447

\[ {} y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (1-a \right ) \cot \left (x \right )^{2} \]

13448

\[ {} y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \]