5.8.3 Problems 201 to 300

Table 5.221: Problems not solved by any CAS

#

ODE

Mathematica

Maple

Sympy

10168

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

10207

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

10242

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

10270

\[ {} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

10299

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

10360

\[ {} x y^{\prime }+y = 0 \]

10393

\[ {} {y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

11361

\[ {} y^{\prime }-a \left (x^{n}-x \right ) y^{3}-y^{2} = 0 \]

11362

\[ {} y^{\prime }-\left (a \,x^{n}+b x \right ) y^{3}-c y^{2} = 0 \]

11363

\[ {} y^{\prime }-f_{3} \left (x \right ) y^{3}-f_{2} \left (x \right ) y^{2}-f_{1} \left (x \right ) y-f_{0} \left (x \right ) = 0 \]

11368

\[ {} y^{\prime }-f \left (x \right ) y^{n}-g \left (x \right ) y-h \left (x \right ) = 0 \]

11369

\[ {} y^{\prime }-f \left (x \right ) y^{a}-g \left (x \right ) y^{b} = 0 \]

11387

\[ {} y^{\prime }-f \left (x \right ) \left (y-g \left (x \right )\right ) \sqrt {\left (y-a \right ) \left (y-b \right )} = 0 \]

11392

\[ {} y^{\prime }+f \left (x \right ) \cos \left (a y\right )+g \left (x \right ) \sin \left (a y\right )+h \left (x \right ) = 0 \]

11395

\[ {} y^{\prime }-a \left (1+\tan \left (y\right )^{2}\right )+\tan \left (y\right ) \tan \left (x \right ) = 0 \]

11432

\[ {} x y^{\prime }-\sin \left (x -y\right ) = 0 \]

11513

\[ {} y y^{\prime }+x^{3}+y = 0 \]

11515

\[ {} y y^{\prime }+a y+\frac {\left (a^{2}-1\right ) x}{4}+b \,x^{n} = 0 \]

11516

\[ {} y y^{\prime }+a y+b \,{\mathrm e}^{x}-2 a = 0 \]

11543

\[ {} y y^{\prime } x -y^{2}+x y+x^{3}-2 x^{2} = 0 \]

11546

\[ {} x \left (a +y\right ) y^{\prime }+b y+c x = 0 \]

11559

\[ {} \left (B x y+A \,x^{2}+a x +b y+c \right ) y^{\prime }-B g \left (x \right )^{2}+A x y+x \alpha +\beta y+\gamma = 0 \]

11562

\[ {} \left (x^{2} y-1\right ) y^{\prime }+8 x y^{2}-8 = 0 \]

11574

\[ {} \left (x^{n \left (n +1\right )} y-1\right ) y^{\prime }+2 \left (n +1\right )^{2} x^{n -1} \left (x^{n^{2}} y^{2}-1\right ) = 0 \]

11647

\[ {} \left (\frac {\operatorname {e1} \left (x +a \right )}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2} \left (x -a \right )}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) y^{\prime }-y \left (\frac {\operatorname {e1}}{\left (\left (x +a \right )^{2}+y^{2}\right )^{{3}/{2}}}+\frac {\operatorname {e2}}{\left (\left (x -a \right )^{2}+y^{2}\right )^{{3}/{2}}}\right ) = 0 \]

11762

\[ {} \left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0 \]

11781

\[ {} \left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0 \]

11783

\[ {} x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0 \]

11804

\[ {} \left (\operatorname {b2} y+\operatorname {a2} x +\operatorname {c2} \right )^{2} {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {b0} y+\operatorname {a0} +\operatorname {c0} = 0 \]

11807

\[ {} x^{2} \left (x y^{2}-1\right ) {y^{\prime }}^{2}+2 x^{2} y^{2} \left (y-x \right ) y^{\prime }-y^{2} \left (x^{2} y-1\right ) = 0 \]

11811

\[ {} x^{2} \left (x^{2} y^{4}-1\right ) {y^{\prime }}^{2}+2 x^{3} y^{3} \left (-x^{2}+y^{2}\right ) y^{\prime }-y^{2} \left (x^{4} y^{2}-1\right ) = 0 \]

11832

\[ {} {y^{\prime }}^{2}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+\left (x y^{6}+x^{2} y^{4}+y^{2} x^{3}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

12132

\[ {} y^{\prime } = -\frac {1}{-\left (y^{3}\right )^{{2}/{3}} x -\textit {\_F1} \left (y^{3}-3 \ln \left (x \right )\right ) \left (y^{3}\right )^{{1}/{3}} x} \]

12180

\[ {} y^{\prime } = -\frac {i \left (32 i x +64+64 y^{4}+32 x^{2} y^{2}+4 x^{4}+64 y^{6}+48 x^{2} y^{4}+12 x^{4} y^{2}+x^{6}\right )}{128 y} \]

12189

\[ {} y^{\prime } = -\frac {i \left (i x +1+x^{4}+2 x^{2} y^{2}+y^{4}+x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}\right )}{y} \]

12310

\[ {} y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

12314

\[ {} y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

12328

\[ {} y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

12438

\[ {} x^{2} y^{\prime \prime }+a y^{\prime }-x y = 0 \]

12486

\[ {} x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+f \left (x \right ) y = 0 \]

12493

\[ {} x^{2} y^{\prime \prime }+\left (x^{2} a +b \right ) x y^{\prime }+f \left (x \right ) y = 0 \]

12515

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }+f \left (x \right ) y = 0 \]

12557

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+f \left (x \right ) y = 0 \]

12686

\[ {} y^{\prime \prime } = -\frac {\left (x^{2} \left (\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right )+\left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )+\left (x^{2}-\operatorname {a3} \right ) \left (x^{2}-\operatorname {a1} \right )\right )-\left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )\right ) y^{\prime }}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )}-\frac {\left (A \,x^{2}+B \right ) y}{x \left (x^{2}-\operatorname {a1} \right ) \left (x^{2}-\operatorname {a2} \right ) \left (x^{2}-\operatorname {a3} \right )} \]

12718

\[ {} y^{\prime \prime } = -\frac {f^{\prime }\left (x \right ) y^{\prime }}{2 f \left (x \right )}-\frac {g \left (x \right ) y}{f \left (x \right )} \]

12731

\[ {} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

12732

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

12750

\[ {} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

12755

\[ {} x^{2} y^{\prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }-y = 0 \]

12779

\[ {} x^{3} y^{\prime \prime \prime }+3 \left (1-a \right ) x^{2} y^{\prime \prime }+\left (4 b^{2} c^{2} x^{2 c +1}+1-4 \nu ^{2} c^{2}+3 a \left (a -1\right ) x \right ) y^{\prime }+\left (4 b^{2} c^{2} \left (c -a \right ) x^{2 c}+a \left (4 \nu ^{2} c^{2}-a^{2}\right )\right ) y = 0 \]

12803

\[ {} y^{\prime \prime \prime \prime }+a \left (b x -1\right ) y^{\prime \prime }+a b y^{\prime }+\lambda y = 0 \]

12804

\[ {} y^{\prime \prime \prime \prime }+\left (x^{2} a +b \lambda +c \right ) y^{\prime \prime }+\left (x^{2} a +\beta \lambda +\gamma \right ) y = 0 \]

12840

\[ {} y^{\left (5\right )}-a x y-b = 0 \]

12845

\[ {} x y^{\left (5\right )}-\left (a A_{1} -A_{0} \right ) x -A_{1} -\left (\left (a A_{2} -A_{1} \right ) x +A_{2} \right ) y^{\prime } = 0 \]

12849

\[ {} \left (x -a \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

12852

\[ {} y^{\prime \prime }-6 y^{2}-x = 0 \]

12854

\[ {} y^{\prime \prime }+a y^{2}+b x +c = 0 \]

12855

\[ {} y^{\prime \prime }-2 y^{3}-x y+a = 0 \]

12857

\[ {} y^{\prime \prime }-2 y^{3} a^{2}+2 a b x y-b = 0 \]

12858

\[ {} y^{\prime \prime }+d +b x y+c y+a y^{3} = 0 \]

12860

\[ {} y^{\prime \prime }+a \,x^{r} y^{2} = 0 \]

12864

\[ {} y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

12865

\[ {} y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

12867

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

12868

\[ {} y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

12870

\[ {} y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

12871

\[ {} y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y = 0 \]

12874

\[ {} y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

12875

\[ {} y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

12876

\[ {} y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

12877

\[ {} y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

12878

\[ {} y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

12882

\[ {} y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+f \left (x \right ) y^{2}+y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) = 0 \]

12889

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

12891

\[ {} y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

12895

\[ {} y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

12905

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

12906

\[ {} x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

12907

\[ {} x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

12908

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

12909

\[ {} x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

12914

\[ {} x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

12915

\[ {} x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

12918

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

12921

\[ {} 4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

12925

\[ {} 2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

12926

\[ {} 2 \left (-x^{k}+4 x^{3}\right ) \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right )-\left (-12 x^{2}+k \,x^{k -1}\right ) \left (y^{2}+3 y^{\prime }\right )+a x y+b = 0 \]

12927

\[ {} x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

12931

\[ {} \sqrt {x}\, y^{\prime \prime }-y^{{3}/{2}} = 0 \]

12934

\[ {} y y^{\prime \prime }-a x = 0 \]

12935

\[ {} y y^{\prime \prime }-x^{2} a = 0 \]

12941

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+{\mathrm e}^{x} y \left (c y^{2}+d \right )+{\mathrm e}^{2 x} \left (b +a y^{4}\right ) = 0 \]

12946

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+a y y^{\prime }-2 a y^{2}+b y^{3} = 0 \]

12948

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2}+\left (-1+a y\right ) y^{\prime }-y \left (1+y\right ) \left (b^{2} y^{2}-a^{2}\right ) = 0 \]

12966

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+f \left (x \right ) y^{2}+a = 0 \]

12969

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}-4 y^{2} \left (2 y+x \right ) = 0 \]

12971

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3} = 0 \]

12972

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+\left (b x +a y\right ) y^{2} = 0 \]

12974

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+b -4 \left (x^{2}+a \right ) y^{2}-8 x y^{3}-3 y^{4} = 0 \]

12977

\[ {} 2 y y^{\prime \prime }-3 {y^{\prime }}^{2}+f \left (x \right ) y^{2} = 0 \]