| # | ODE | Mathematica | Maple | Sympy |
| \[
{} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+2 y = x^{2}+x +1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 x y^{\prime }+y = 4 x y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y = 5 \sin \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = y \csc \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime } = y+x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x y+1+y^{2} y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+x y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 x y^{\prime \prime \prime }-4 x y = \cos \left (y\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-3 x y^{\prime \prime }+4 y = x^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+9 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-6 y \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )-x \left (t \right ) y \left (t \right )]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+\left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )^{5}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right )+x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )+y \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-x \left (t \right )^{2}+2 y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+x \left (t \right )^{2} y \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 y \left (t \right )-x \left (t \right )^{2}]
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x^{3} y+\left (2 x^{2} y^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {x y+3}{5 x -y}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x y+3 y}{x^{2}+2 y^{2}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \frac {8 x^{4} y+12 y^{2} x^{3}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{x^{2} y^{4}+1} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{3}+y^{2}+\left (x y-3 x^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{2}+x \left (x^{2} y^{2}+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2} y^{2}-1\right ) y+x \left (x^{2} y+2 x +y\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y+2 t +2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{4} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (t \right ) y^{\prime \prime }+y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t \left (t^{2}-4\right ) y^{\prime \prime }+y = {\mathrm e}^{t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y = f \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|