5.8.8 Problems 701 to 778

Table 5.231: Problems not solved by any CAS

#

ODE

Mathematica

Maple

Sympy

21897

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 6 x \left (t \right )^{2}-6 y \left (t \right )] \]

21899

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )^{3}-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

21943

\[ {} y = \left (2 x^{2} y^{3}-x \right ) y^{\prime } \]

21955

\[ {} y^{3} \left (y y^{\prime }+x \right ) = \left (x^{2}+y^{2}\right )^{3} y^{\prime } \]

21969

\[ {} a x y-b +\left (c x y-d \right ) x y^{\prime } = 0 \]

22068

\[ {} 5 {b^{\prime \prime \prime \prime }}^{5}+7 {b^{\prime }}^{10}+b^{7}-b^{5} = p \]

22070

\[ {} {y^{\prime \prime }}^{2}-3 y y^{\prime }+x y = 0 \]

22073

\[ {} y^{\prime \prime \prime \prime }+x y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+\sin \left (y\right ) = 0 \]

22074

\[ {} {r^{\prime \prime }}^{2}+r^{\prime \prime }+y r^{\prime } = 0 \]

22085

\[ {} y^{\prime \prime }+4 y = 0 \]

22089

\[ {} y^{\prime } = x \sin \left (y\right )+{\mathrm e}^{x} \]

22193

\[ {} 2 x y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

22194

\[ {} y y^{\prime \prime \prime }+x y^{\prime }+y = x^{2} \]

22197

\[ {} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }+\left (1+x \right ) y = 0 \]

22201

\[ {} y^{\prime \prime \prime \prime }+x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+2 y = x^{2}+x +1 \]

22202

\[ {} y^{\prime \prime }+2 x y^{\prime }+y = 4 x y^{2} \]

22204

\[ {} y y^{\prime }+y^{\prime \prime } = x^{2} \]

22205

\[ {} y^{\prime \prime \prime }+\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime }+y = 5 \sin \left (x \right ) \]

22403

\[ {} y^{\prime \prime }+y = 0 \]

22404

\[ {} y^{\prime \prime }+y = x \]

22408

\[ {} {s^{\prime \prime \prime }}^{2}+{s^{\prime \prime }}^{3} = s-3 t \]

22412

\[ {} y^{\prime \prime }+x y = \sin \left (y^{\prime \prime }\right ) \]

22463

\[ {} y^{\prime } = y \csc \left (x \right ) \]

22464

\[ {} y^{\prime } = \frac {1}{\sqrt {x^{2}+4 y^{2}-4}} \]

23010

\[ {} [x \left (t \right ) y^{\prime }\left (t \right )+y \left (t \right ) x^{\prime }\left (t \right ) = t^{2}, 2 x^{\prime \prime }\left (t \right )-y^{\prime }\left (t \right ) = 5 t] \]

23222

\[ {} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }-\frac {\tan \left (x \right ) y}{x} = \frac {y^{3}}{x^{3}} \]

23257

\[ {} y y^{\prime } = y+x^{2} \]

23272

\[ {} y^{2} y^{\prime }+y \tan \left (x \right ) = \sin \left (x \right )^{3} \]

23304

\[ {} {\mathrm e}^{x} \cos \left (y\right )-x^{2}+\left ({\mathrm e}^{y} \sin \left (x \right )+y^{2}\right ) y^{\prime } = 0 \]

23323

\[ {} 2 x -3 y+\left (7 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

23327

\[ {} x y+1+y^{2} y^{\prime } = 0 \]

23357

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 5 \]

23362

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

23394

\[ {} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23403

\[ {} y+x y^{\prime \prime } = 0 \]

23405

\[ {} \left (1-x \right ) y^{\prime \prime }-x y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

23406

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+y = 2 \]

23407

\[ {} \left (x^{3}-1\right ) y^{\prime \prime \prime }-3 y^{\prime \prime }+4 x y = 0 \]

23411

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \,{\mathrm e}^{x} = 0 \]

23413

\[ {} 2 x y^{\prime \prime }-7 \cos \left (x \right ) y^{\prime }+y = {\mathrm e}^{-x} \]

23414

\[ {} y^{\prime \prime }+4 \tan \left (x \right ) y^{\prime }-x y = 0 \]

23416

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+3 x^{3} y^{\prime }+\frac {4 y}{x -1} = 0 \]

23470

\[ {} y^{\prime \prime }+y = 0 \]

23585

\[ {} 3 x y^{\prime \prime \prime }-4 x y = \cos \left (y\right ) \]

23588

\[ {} y^{\prime \prime \prime }-3 x y^{\prime \prime }+4 y = x^{2} \]

23870

\[ {} y^{\prime \prime }+9 y = 0 \]

23873

\[ {} y^{\prime \prime }+9 y = 0 \]

23912

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-6 y \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )-x \left (t \right ) y \left (t \right )] \]

23913

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+\left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )^{5}] \]

23914

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )+y \left (t \right )^{2}] \]

23931

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-x \left (t \right )^{2}+2 y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+x \left (t \right )^{2} y \left (t \right )^{2}] \]

23933

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}] \]

23934

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 y \left (t \right )-x \left (t \right )^{2}] \]

23976

\[ {} 2 x^{3} y+\left (2 x^{2} y^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime } = 0 \]

23984

\[ {} y^{\prime } = \frac {x y+3}{5 x -y} \]

23987

\[ {} y^{\prime } = \frac {2 x y+3 y}{x^{2}+2 y^{2}} \]

24004

\[ {} \frac {8 x^{4} y+12 y^{2} x^{3}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{x^{2} y^{4}+1} = 0 \]

24017

\[ {} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

24020

\[ {} x^{3}+y^{2}+\left (x y-3 x^{2}\right ) y^{\prime } = 0 \]

24159

\[ {} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0 \]

24311

\[ {} x +\sin \left (y\right )-\cos \left (y\right )-x \cos \left (y\right ) \left (2 x \sin \left (y\right )+1\right ) y^{\prime } = 0 \]

24336

\[ {} \left (-x^{2}+1\right ) y^{2}+x \left (x^{2} y^{2}+2 x +y\right ) y^{\prime } = 0 \]

24337

\[ {} \left (x^{2} y^{2}-1\right ) y+x \left (x^{2} y+2 x +y\right ) y^{\prime } = 0 \]

24688

\[ {} y^{\prime \prime }+y = x^{3} \]

24919

\[ {} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0 \]

25145

\[ {} y+2 t +2 t y y^{\prime } = 0 \]

25147

\[ {} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0 \]

25261

\[ {} y^{\prime \prime \prime \prime }+y^{4} = 0 \]

25262

\[ {} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0 \]

25299

\[ {} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2} = 0 \]

25301

\[ {} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t \]

25302

\[ {} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t} \]

25304

\[ {} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0 \]

25329

\[ {} \sin \left (t \right ) y^{\prime \prime }+y = \cos \left (t \right ) \]

25331

\[ {} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y = 0 \]

25332

\[ {} t \left (t^{2}-4\right ) y^{\prime \prime }+y = {\mathrm e}^{t} \]

25334

\[ {} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y = f \left (t \right ) \]

25353

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]