4.12.19 Problems 1801 to 1900

Table 4.1115: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

23468

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime } = 0 \]

23492

\[ {} 2 y-2 x y^{\prime }+3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23497

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23502

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

23503

\[ {} 3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0 \]

23504

\[ {} x^{4} y^{\prime \prime \prime \prime }-5 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23505

\[ {} 2 x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

23506

\[ {} 2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-12 x y^{\prime }-2 y = 0 \]

23507

\[ {} x^{5} y^{\left (5\right )}-2 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime } = 0 \]

23508

\[ {} 7 x^{4} y^{\prime \prime \prime \prime }-2 x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 0 \]

23509

\[ {} x^{5} y^{\left (5\right )}+3 x^{3} y^{\prime \prime \prime }-9 x^{2} y^{\prime \prime }+18 x y^{\prime }-18 y = 0 \]

23510

\[ {} x^{6} y^{\left (6\right )}-12 x^{4} y^{\prime \prime \prime \prime } = 0 \]

23511

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

23513

\[ {} x y^{\prime \prime \prime }-\frac {6 y}{x^{2}} = 0 \]

23514

\[ {} x^{2} y^{\prime \prime \prime \prime }-x y^{\prime \prime \prime } = 0 \]

23548

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 0 \]

23575

\[ {} y^{\prime \prime \prime }+y^{\prime }-2 y = x^{3} \]

23579

\[ {} y^{\prime \prime \prime }-y = 3 \ln \left (x \right ) \]

23580

\[ {} y^{\prime \prime \prime \prime }-y = x^{2} \]

23588

\[ {} y^{\prime \prime \prime }-3 x y^{\prime \prime }+4 y = x^{2} \]

23590

\[ {} 3 x y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 3 \cos \left (x \right ) \]

23596

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23597

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1 \]

23602

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23603

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1 \]

23605

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = {\mathrm e}^{-2 x} \]

23607

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \]

23627

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23634

\[ {} e i u^{\prime \prime \prime \prime } = \cos \left (x \right ) \]

23635

\[ {} e i u^{\prime \prime \prime \prime } = {\mathrm e}^{-x} \]

23636

\[ {} e i u^{\prime \prime \prime \prime } = \sinh \left (x \right ) \]

23637

\[ {} e i u^{\prime \prime \prime \prime } = 1 \]

23638

\[ {} e i u^{\prime \prime \prime \prime } = x^{2} \]

23639

\[ {} e i u^{\prime \prime \prime \prime } = x^{4} \]

23668

\[ {} y^{\left (5\right )}-y^{\prime }-\frac {4 y}{x} = 0 \]

23755

\[ {} y^{\prime \prime \prime }-27 y = 0 \]

23761

\[ {} y^{\prime \prime \prime }-y = -1 \]

23762

\[ {} y^{\prime \prime \prime }+y = -1 \]

23772

\[ {} y^{\prime \prime \prime }-y = 12 \sinh \left (t \right ) \]

23777

\[ {} y^{\prime \prime \prime }+y = 18 \,{\mathrm e}^{2 t} \]

23778

\[ {} y^{\prime \prime \prime }+8 y = -12 \,{\mathrm e}^{-2 t} \]

24059

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime } = 0 \]

24068

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

24106

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

24107

\[ {} y^{\left (8\right )}-y = 0 \]

24108

\[ {} y^{\prime \prime \prime }-y = 1 \]

24110

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = x^{3} \]

24112

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+2 y^{\prime }-y = x^{4}-2 x +1 \]

24113

\[ {} y^{\prime \prime \prime \prime }+y = \sin \left (x \right ) \]

24114

\[ {} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{x}+1 \]

24115

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{4} {\mathrm e}^{2 x} \]

24116

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = \cos \left (x \right ) \]

24117

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x -{\mathrm e}^{3 x} \]

24118

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (x \right ) \]

24119

\[ {} y^{\prime \prime \prime }-y = x^{n} \]

24124

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = f \left (x \right ) \]

24130

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 2 x \,{\mathrm e}^{3 x} \]

24131

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

24133

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x \]

24134

\[ {} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y = {\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right ) \]

24136

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x} \]

24139

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = x^{2}-x \]

24140

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = {\mathrm e}^{-4 x} \]

24142

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right ) \]

24143

\[ {} y^{\left (6\right )}+y^{\prime \prime \prime \prime }-y = 4 x^{5}-6 x^{2}+2 \]

24144

\[ {} y^{\left (8\right )}+y = x^{15} \]

24148

\[ {} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime } = {\mathrm e}^{-x} x^{9} \]

24150

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = {\mathrm e}^{2 x} \cos \left (3 x \right ) \]

24163

\[ {} y^{\prime \prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]

24164

\[ {} y^{\prime \prime \prime \prime }+16 y = x^{2}-4 \cos \left (3 x \right ) \]

24165

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x} \]

24166

\[ {} y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y = x^{2} {\mathrm e}^{3 x} \]

24167

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime }+2 y = -2 x^{4}+x^{2} \]

24168

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = \cosh \left (2 x \right ) \]

24172

\[ {} y^{\left (5\right )} = 120 \]

24175

\[ {} y^{\prime \prime \prime }-y^{\prime } = x^{3}+{\mathrm e}^{-2 x} \]

24180

\[ {} y^{\left (10\right )}+y = x^{10} \]

24181

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \]

24185

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y = x^{5}+2 x^{2} \]

24190

\[ {} y^{\left (6\right )}+y = x^{7}+2 x^{3} \]

24530

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-15 y^{\prime } = 0 \]

24531

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-8 y^{\prime } = 0 \]

24532

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

24533

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

24534

\[ {} 4 y^{\prime \prime \prime }-13 y^{\prime }+6 y = 0 \]

24535

\[ {} 4 y^{\prime \prime \prime }-49 y^{\prime }-60 y = 0 \]

24536

\[ {} x^{\prime \prime \prime }-2 x^{\prime \prime }-3 x^{\prime } = 0 \]

24537

\[ {} x^{\prime \prime \prime }-7 x^{\prime }+6 x = 0 \]

24538

\[ {} 10 y^{\prime \prime \prime }+y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

24539

\[ {} 4 y^{\prime \prime \prime }-13 y^{\prime }-6 y = 0 \]

24540

\[ {} y^{\prime \prime \prime }-5 y^{\prime }-2 y = 0 \]

24541

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

24542

\[ {} 4 y^{\prime \prime \prime \prime }-15 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

24543

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-13 y^{\prime \prime }+38 y^{\prime }-24 y = 0 \]

24544

\[ {} 6 y^{\prime \prime \prime \prime }+23 y^{\prime \prime \prime }+28 y^{\prime \prime }+13 y^{\prime }+2 y = 0 \]

24545

\[ {} 4 y^{\prime \prime \prime \prime }-45 y^{\prime \prime }-70 y^{\prime }-24 y = 0 \]

24551

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 0 \]

24554

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

24557

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

24558

\[ {} 9 y^{\prime \prime \prime }+6 y^{\prime \prime }+y^{\prime } = 0 \]