2.2.186 Problems 18501 to 18524

Table 2.373: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18501

\[ {}x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{\prime } y^{3}+x^{3} \]

[_separable]

16.443

18502

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

3.773

18503

\[ {}{y^{\prime }}^{2}-9 y^{\prime }+18 = 0 \]

[_quadrature]

1.114

18504

\[ {}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.628

18505

\[ {}\left (-y+x y^{\prime }\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (y^{2}+x^{2}\right )^{{3}/{2}} \]

[[_1st_order, _with_linear_symmetries]]

100.286

18506

\[ {}\left (-y+x y^{\prime }\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

23.296

18507

\[ {}3 y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+4 y^{2}-x^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.244

18508

\[ {}\left (y^{2}+x^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y^{\prime } y\right )+\left (x +y^{\prime } y\right )^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.158

18509

\[ {}\left (y^{\prime } y+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.658

18510

\[ {}y^{2} \left (1-{y^{\prime }}^{2}\right ) = b \]

[_quadrature]

72.718

18511

\[ {}\left (-y+x y^{\prime }\right ) \left (x +y^{\prime } y\right ) = h^{2} y^{\prime } \]

[_rational]

123.604

18512

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

[_separable]

1.825

18513

\[ {}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

251.550

18514

\[ {}x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

[_quadrature]

0.886

18515

\[ {}x y {y^{\prime }}^{2}+y^{\prime } \left (3 x^{2}-2 y^{2}\right )-6 x y = 0 \]

[_separable]

8.223

18516

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

507.285

18517

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

2.549

18518

\[ {}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

30.802

18519

\[ {}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0 \]

unknown

31.026

18520

\[ {}\left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

[‘y=_G(x,y’)‘]

16.648

18521

\[ {}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

[_quadrature]

32.873

18522

\[ {}y = x y^{\prime }+\frac {m}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.542

18523

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

106.908

18524

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

9.283