| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime \prime }+4 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.099 |
|
| \begin{align*}
x^{\prime \prime }+16 x&=0 \\
x \left (0\right ) &= -2 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.848 |
|
| \begin{align*}
x^{\prime \prime }+256 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.089 |
|
| \begin{align*}
x^{\prime \prime }+9 x&=0 \\
x \left (0\right ) &= {\frac {1}{3}} \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.781 |
|
| \begin{align*}
10 x^{\prime \prime }+\frac {x}{10}&=0 \\
x \left (0\right ) &= -5 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.375 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+3 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= -4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.309 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.494 |
|
| \begin{align*}
\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x&=0 \\
x \left (0\right ) &= -{\frac {1}{2}} \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.083 |
|
| \begin{align*}
4 x^{\prime \prime }+2 x^{\prime }+8 x&=0 \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
27.329 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
13.500 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+20 x&=0 \\
x \left (0\right ) &= 1 \\
x^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
24.099 |
|
| \begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
47.426 |
|
| \begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✓ |
81.432 |
|
| \begin{align*}
x^{\prime \prime }+x&=\left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
189.772 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+13 x&=\left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
112.476 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.856 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.288 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (\frac {9 t}{10}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.560 |
|
| \begin{align*}
x^{\prime \prime }+x&=\cos \left (\frac {7 t}{10}\right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 1 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.230 |
|
| \begin{align*}
x^{\prime \prime }+\frac {x^{\prime }}{10}+x&=3 \cos \left (2 t \right ) \\
x \left (0\right ) &= 0 \\
x^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
53.321 |
|
| \begin{align*}
x^{\prime }&=6 \\
y^{\prime }&=\cos \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
x^{\prime }&=x \\
y^{\prime }&=1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
x^{\prime }&=0 \\
y^{\prime }&=-2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
x^{\prime }&=x^{2} \\
y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.047 |
|
| \begin{align*}
x_{1}^{\prime }&=-3 x_{1} \\
x_{2}^{\prime }&=1 \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= -1 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.650 |
|
| \begin{align*}
x_{1}^{\prime }&=-x_{1}+1 \\
x_{2}^{\prime }&=x_{2} \\
\end{align*} With initial conditions \begin{align*}
x_{1} \left (0\right ) &= 0 \\
x_{2} \left (0\right ) &= 1 \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
x^{\prime }&=-3 x+6 y \\
y^{\prime }&=4 x-y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.645 |
|
| \begin{align*}
x^{\prime }&=8 x-y \\
y^{\prime }&=x+6 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.490 |
|
| \begin{align*}
x^{\prime }&=-x-2 y \\
y^{\prime }&=x+y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.665 |
|
| \begin{align*}
x^{\prime }&=4 x+2 y \\
y^{\prime }&=-x+2 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.813 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=1-x \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.779 |
|
| \begin{align*}
x^{\prime }&=y \\
y^{\prime }&=-x+\sin \left (2 t \right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.930 |
|
| \begin{align*}
x^{\prime \prime }-3 x^{\prime }+4 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
34.493 |
|
| \begin{align*}
x^{\prime \prime }+6 x^{\prime }+9 x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.875 |
|
| \begin{align*}
x^{\prime \prime }+16 x&=t \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.222 |
|
| \begin{align*}
x^{\prime \prime }+x&={\mathrm e}^{t} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.579 |
|
| \begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
69.965 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
28.096 |
|
| \begin{align*}
y^{\prime }&=y+3 y^{{1}/{3}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.892 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x -y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.251 |
|
| \begin{align*}
y^{\prime }&=\sqrt {x^{2}-y}-x \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
57.466 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
10.233 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
52.755 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y\right )-\cos \left (x \right ) \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
3.485 |
|
| \begin{align*}
y^{\prime }&=1-\cot \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.557 |
|
| \begin{align*}
y^{\prime }&=\left (3 x -y\right )^{{1}/{3}}-1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.823 |
|
| \begin{align*}
y^{\prime }&=\sin \left (y x \right ) \\
y \left (0\right ) &= 0 \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✓ |
✓ |
✗ |
2.112 |
|
| \begin{align*}
y^{\prime } x +y&=\cos \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.287 |
|
| \begin{align*}
2 y+y^{\prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.419 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime }+y x&=2 x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.316 |
|
| \begin{align*}
y^{\prime }&=x +1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.405 |
|
| \begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.647 |
|
| \begin{align*}
y^{\prime }&=-x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.048 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{2}-y+\frac {3}{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.954 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.435 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right ) x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.410 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
31.370 |
|
| \begin{align*}
y^{\prime }&=\cos \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.251 |
|
| \begin{align*}
y^{\prime }&=-x^{2}+y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.047 |
|
| \begin{align*}
y^{\prime }&=x^{2}+2 x -y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| \begin{align*}
y^{\prime }&=\frac {1+y}{x -1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.872 |
|
| \begin{align*}
y^{\prime }&=\frac {x +y}{x -y} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
12.792 |
|
| \begin{align*}
y^{\prime }&=1-x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.432 |
|
| \begin{align*}
y^{\prime }&=2 x -y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.934 |
|
| \begin{align*}
y^{\prime }&=y+x^{2} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.973 |
|
| \begin{align*}
y^{\prime }&=-\frac {y}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.249 |
|
| \begin{align*}
y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{x} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.548 |
|
| \begin{align*}
y^{\prime }&=y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.248 |
|
| \begin{align*}
y^{\prime }&=y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
5.559 |
|
| \begin{align*}
y^{\prime }&=x^{2}-y^{2} \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
32.131 |
|
| \begin{align*}
y^{\prime }&=x +y^{2} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
793.290 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
3.022 |
|
| \begin{align*}
y^{\prime }&=2 y-2 x^{2}-3 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
24.901 |
|
| \begin{align*}
y^{\prime } x&=2 x -y \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
11.751 |
|
| \begin{align*}
1+y^{2}+\left (x^{2}+1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.217 |
|
| \begin{align*}
y y^{\prime } x +1+y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
24.298 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y&=0 \\
y \left (\frac {\pi }{2}\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.452 |
|
| \begin{align*}
1+y^{2}&=y^{\prime } x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.939 |
|
| \begin{align*}
y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.587 |
|
| \begin{align*}
x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
26.542 |
|
| \begin{align*}
{\mathrm e}^{-y} y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.626 |
|
| \begin{align*}
y \ln \left (y\right )+y^{\prime } x&=1 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
31.381 |
|
| \begin{align*}
y^{\prime }&=a^{x +y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.074 |
|
| \begin{align*}
{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
12.028 |
|
| \begin{align*}
2 x \sqrt {1-y^{2}}&=\left (x^{2}+1\right ) y^{\prime } \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
10.696 |
|
| \begin{align*}
{\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.204 |
|
| \begin{align*}
\sin \left (x \right ) y^{2}+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
24.855 |
|
| \begin{align*}
y^{\prime }&=\sin \left (x -y\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.410 |
|
| \begin{align*}
y^{\prime }&=a x +b y+c \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
4.471 |
|
| \begin{align*}
\left (x +y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
49.110 |
|
| \begin{align*}
y^{\prime } x +y&=a \left (y x +1\right ) \\
y \left (\frac {1}{a}\right ) &= -a \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
23.553 |
|
| \begin{align*}
a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime }&=0 \\
y \left (a \right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✗ |
31.085 |
|
| \begin{align*}
y^{\prime }&=\frac {y}{x} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
27.360 |
|
| \begin{align*}
\cos \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.297 |
|
| \begin{align*}
{\mathrm e}^{y^{\prime }}&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.871 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.841 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.046 |
|
| \begin{align*}
\tan \left (y^{\prime }\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| \begin{align*}
{\mathrm e}^{y^{\prime }}&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.680 |
|