# |
ODE |
Mathematica |
Maple |
\[
{}c y^{\prime } = y
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = b y
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = a x +b y^{2}
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = \frac {a x +b y^{2}}{r}
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = \frac {a x +b y^{2}}{r x}
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}}
\] |
✓ |
✓ |
|
\[
{}c y^{\prime } = \frac {a x +b y^{2}}{y}
\] |
✓ |
✓ |
|
\[
{}a \sin \left (x \right ) y x y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right )+y
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \sin \left (x \right )+y^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )+\frac {y}{x}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x}
\] |
✗ |
✗ |
|
\[
{}y^{\prime } = x +y+b y^{2}
\] |
✓ |
✓ |
|
\[
{}x y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}5 y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}{\mathrm e} y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}\pi y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}\sin \left (x \right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}f \left (x \right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x y^{\prime } = 1
\] |
✓ |
✓ |
|
\[
{}x y^{\prime } = \sin \left (x \right )
\] |
✓ |
✓ |
|
\[
{}\left (x -1\right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x y y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x y \sin \left (x \right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}\pi y \sin \left (x \right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x \sin \left (x \right ) y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}x \sin \left (x \right ) {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y {y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{n} = 0
\] |
✓ |
✓ |
|
\[
{}x {y^{\prime }}^{n} = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = x
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = x +y
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {y}{x}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {y^{2}}{x}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {y^{3}}{x}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{3} = \frac {y^{2}}{x}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {1}{x y}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {1}{x y^{3}}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {1}{x^{2} y^{3}}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{4} = \frac {1}{x y^{3}}
\] |
✓ |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {1}{y^{4} x^{3}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \sqrt {1+6 x +y}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \left (1+6 x +y\right )^{{1}/{3}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \left (1+6 x +y\right )^{{1}/{4}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +y\right )^{4}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +c y\right )^{6}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = 10+{\mathrm e}^{x +y}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2}
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )
\] |
✓ |
✓ |
|
\[
{}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right )
\] |
✓ |
✓ |
|
\[
{}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\] |
✓ |
✓ |
|
\[
{}[2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\] |
✓ |
✓ |
|
\[
{}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right ) = y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}]
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = t
\] |
✗ |
✓ |
|
\[
{}y^{\prime }-t y = 0
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = 0
\] |
✗ |
✓ |
|
\[
{}t y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = \sin \left (t \right )
\] |
✓ |
✗ |
|
\[
{}t y^{\prime }+y = t
\] |
✓ |
✓ |
|
\[
{}t y^{\prime }+y = t
\] |
✓ |
✓ |
|
\[
{}y^{\prime }+t^{2} y = 0
\] |
✓ |
✓ |
|
\[
{}\left (a t +1\right ) y^{\prime }+y = t
\] |
✓ |
✓ |
|
\[
{}y^{\prime }+\left (a t +b t \right ) y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime }+\left (a t +b t \right ) y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{n} = 0
\] |
✓ |
✓ |
|
\[
{}a y^{\prime \prime } = 0
\] |
✓ |
✓ |
|
\[
{}a {y^{\prime \prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}a {y^{\prime \prime }}^{n} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = 1
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = 1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime } = x
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2} = x
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{3} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = 1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = 1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime } = x
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime } = x
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2} = x
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
✓ |
✓ |
|
\[
{}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0
\] |
✗ |
✗ |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 1+x
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1
\] |
✓ |
✓ |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
✓ |
✓ |
|