6.88 Problems 8701 to 8800

Table 6.175: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

8701

\[ {} y^{\prime } = \frac {2 x -y}{x +4 y} \]

8702

\[ {} y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

8703

\[ {} y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

8704

\[ {} x y-1+x^{2} y^{\prime } = 0 \]

8705

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

8706

\[ {} y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

8707

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]

8708

\[ {} y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

8709

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )] \]

8710

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )] \]

8711

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )+4 \,{\mathrm e}^{t}] \]

8712

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )+10, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )-2 \,{\mathrm e}^{t}] \]

8713

\[ {} y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

8714

\[ {} y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

8715

\[ {} y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

8716

\[ {} y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

8717

\[ {} y^{\prime } = y+1 \]

8718

\[ {} y^{\prime } = 1+x \]

8719

\[ {} y^{\prime } = x \]

8720

\[ {} y^{\prime } = y \]

8721

\[ {} y^{\prime } = 0 \]

8722

\[ {} y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

8723

\[ {} y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

8724

\[ {} y^{\prime } = \frac {2 y}{x} \]

8725

\[ {} y^{\prime } = \frac {2 y}{x} \]

8726

\[ {} y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

8727

\[ {} y^{\prime } = \frac {1}{x} \]

8728

\[ {} y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

8729

\[ {} \frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

8730

\[ {} y^{\prime } = \sqrt {\frac {y+1}{y^{2}}} \]

8731

\[ {} y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

8732

\[ {} y^{\prime }+\frac {y}{3} = \frac {\left (1-2 x \right ) y^{4}}{3} \]

8733

\[ {} y^{\prime } = \sqrt {y}+x \]

8734

\[ {} x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

8735

\[ {} y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

8736

\[ {} \left (x +y\right ) y^{\prime } = 0 \]

8737

\[ {} x y^{\prime } = 0 \]

8738

\[ {} \frac {y^{\prime }}{x +y} = 0 \]

8739

\[ {} \frac {y^{\prime }}{x} = 0 \]

8740

\[ {} y^{\prime } = 0 \]

8741

\[ {} y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

8742

\[ {} y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

8743

\[ {} 2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

8744

\[ {} y^{\prime } = \frac {1}{1-y} \]

8745

\[ {} p^{\prime } = a p-b p^{2} \]

8746

\[ {} y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

8747

\[ {} f^{\prime } x -f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

8748

\[ {} x y^{\prime }-2 y+b y^{2} = c \,x^{4} \]

8749

\[ {} x y^{\prime }-y+y^{2} = x^{{2}/{3}} \]

8750

\[ {} u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

8751

\[ {} y y^{\prime }-y = x \]

8752

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {} 5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8754

\[ {} y^{\prime \prime }+y^{\prime }+4 y = 1 \]

8755

\[ {} y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

8756

\[ {} y = x {y^{\prime }}^{2} \]

8757

\[ {} y y^{\prime } = 1-x {y^{\prime }}^{3} \]

8758

\[ {} f^{\prime } = \frac {1}{f} \]

8759

\[ {} t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

8760

\[ {} \left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

8761

\[ {} t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

8762

\[ {} t y^{\prime \prime }+y^{\prime } = 0 \]

8763

\[ {} t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

8764

\[ {} y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

8765

\[ {} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

8766

\[ {} y^{\prime \prime } = 0 \]

8767

\[ {} y^{\prime \prime } = 1 \]

8768

\[ {} y^{\prime \prime } = f \left (t \right ) \]

8769

\[ {} y^{\prime \prime } = k \]

8770

\[ {} y^{\prime } = -4 \sin \left (x -y\right )-4 \]

8771

\[ {} y^{\prime }+\sin \left (x -y\right ) = 0 \]

8772

\[ {} y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

8773

\[ {} y y^{\prime \prime } = 0 \]

8774

\[ {} y y^{\prime \prime } = 1 \]

8775

\[ {} y y^{\prime \prime } = x \]

8776

\[ {} y^{2} y^{\prime \prime } = x \]

8777

\[ {} y^{2} y^{\prime \prime } = 0 \]

8778

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

8779

\[ {} 3 y y^{\prime \prime }+y = 5 \]

8780

\[ {} a y y^{\prime \prime }+b y = c \]

8781

\[ {} a y^{2} y^{\prime \prime }+b y^{2} = c \]

8782

\[ {} a y y^{\prime \prime }+b y = 0 \]

8783

\[ {} [x^{\prime }\left (t \right ) = 9 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = 6 x \left (t \right )+4 y \left (t \right )+3 z \left (t \right )] \]

8784

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )] \]

8785

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right )] \]

8786

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )] \]

8787

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right ), z^{\prime }\left (t \right ) = z \left (t \right )] \]

8788

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+4 z \left (t \right )] \]

8789

\[ {} x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

8790

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

8791

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

8792

\[ {} y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

8793

\[ {} y^{\prime } = x^{2}+y^{2} \]

8794

\[ {} y^{\prime } = 2 \sqrt {y} \]

8795

\[ {} z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

8796

\[ {} y^{\prime } = \sqrt {1-y^{2}} \]

8797

\[ {} y^{\prime } = x^{2}+y^{2}-1 \]

8798

\[ {} y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]

8799

\[ {} y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

8800

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]