6.90 Problems 8901 to 9000

Table 6.179: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

8901

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

8902

\[ {}x^{2} y^{\prime \prime }+\left (-1+\cos \left (x \right )\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

8903

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

8904

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1+x \right ) y = 0 \]

8905

\[ {}\left (1+x \right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

8906

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

8907

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \]

8908

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

8909

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

8910

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

8911

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

8912

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

8913

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

8914

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

8915

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

8916

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

8917

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

8918

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

8919

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (1+x \right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

8920

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

8921

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

8922

\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

8923

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

8924

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

8925

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8926

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

8927

\[ {}x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+2 y = 0 \]

8928

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

8929

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

8930

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

8931

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \]

8932

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \]

8933

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \left (x \right ) \]

8934

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \cos \left (x \right ) \]

8935

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \left (x \right ) \]

8936

\[ {}\cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-x y = 0 \]

8937

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8938

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \]

8939

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8940

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

8941

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

8942

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

8943

\[ {}x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \]

8944

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

8945

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8946

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

8947

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

8948

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

8949

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

8950

\[ {}x^{2} y^{\prime \prime }-x y = 0 \]

8951

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

8952

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

8953

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

8954

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

8955

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

8956

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

8957

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

8958

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

8959

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t +1, y^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+3 t -1] \]

8960

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

8961

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

8962

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

8963

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8964

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

8965

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8966

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

8967

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 6 \,{\mathrm e}^{x} x^{3} \]

8968

\[ {}y^{\prime }+y = \frac {1}{x} \]

8969

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

8970

\[ {}x y^{\prime }+y = 0 \]

8971

\[ {}y^{\prime } = \frac {1}{x} \]

8972

\[ {}y^{\prime \prime } = \frac {1}{x} \]

8973

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

8974

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

8975

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

8976

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

8977

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

8978

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

8979

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

8980

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

8981

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

8982

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

8983

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

8984

\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

8985

\[ {}y^{\prime } = 0 \]

8986

\[ {}y^{\prime } = a \]

8987

\[ {}y^{\prime } = x \]

8988

\[ {}y^{\prime } = 1 \]

8989

\[ {}y^{\prime } = a x \]

8990

\[ {}y^{\prime } = a x y \]

8991

\[ {}y^{\prime } = a x +y \]

8992

\[ {}y^{\prime } = a x +b y \]

8993

\[ {}y^{\prime } = y \]

8994

\[ {}y^{\prime } = b y \]

8995

\[ {}y^{\prime } = a x +b y^{2} \]

8996

\[ {}c y^{\prime } = 0 \]

8997

\[ {}c y^{\prime } = a \]

8998

\[ {}c y^{\prime } = a x \]

8999

\[ {}c y^{\prime } = a x +y \]

9000

\[ {}c y^{\prime } = a x +b y \]