6.138 Problems 13701 to 13800

Table 6.275: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13701

\[ {} x^{\prime \prime \prime }-6 x^{\prime \prime }+11 x^{\prime }-6 x = {\mathrm e}^{-t} \]

13702

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y = \sin \left (x \right ) \]

13703

\[ {} x^{\prime \prime \prime \prime }-4 x^{\prime \prime \prime }+8 x^{\prime \prime }-8 x^{\prime }+4 x = \sin \left (t \right ) \]

13704

\[ {} x^{\prime \prime \prime \prime }-5 x^{\prime \prime }+4 x = {\mathrm e}^{t} \]

13705

\[ {} t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0 \]

13706

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13707

\[ {} \left (t \cos \left (t \right )-\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

13708

\[ {} \left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (-t +2\right ) x = 0 \]

13709

\[ {} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13710

\[ {} \tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

13711

\[ {} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

13712

\[ {} x^{\prime \prime }-x = \frac {1}{t} \]

13713

\[ {} y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

13714

\[ {} t^{2} x^{\prime \prime }-2 x = t^{3} \]

13715

\[ {} x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

13716

\[ {} \left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

13717

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13718

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

13719

\[ {} t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]

13720

\[ {} t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]

13721

\[ {} x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]

13722

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

13723

\[ {} 4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

13724

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

13725

\[ {} 3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]

13726

\[ {} t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

13727

\[ {} a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

13728

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

13729

\[ {} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13730

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

13731

\[ {} 2 x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

13732

\[ {} y^{\prime \prime }-2 x y^{\prime }-4 y = 0 \]

13733

\[ {} y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

13734

\[ {} x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

13735

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-x^{2} y = 0 \]

13736

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

13737

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

13738

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )+t^{2}] \]

13739

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+\cos \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13740

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \]

13741

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right )+{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13742

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+\cos \left (3 t \right )] \]

13743

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+{\mathrm e}^{2 t}] \]

13744

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+14 y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )] \]

13754

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+14 y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )] \]

13755

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )-3 y \left (t \right )] \]

13756

\[ {} [x^{\prime }\left (t \right ) = 11 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right )] \]

13757

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+20 y \left (t \right ), y^{\prime }\left (t \right ) = 40 x \left (t \right )-19 y \left (t \right )] \]

13758

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13759

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13760

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+4 y \left (t \right )] \]

13761

\[ {} [x^{\prime }\left (t \right ) = -11 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 13 x \left (t \right )-9 y \left (t \right )] \]

13762

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 10 x \left (t \right )-3 y \left (t \right )] \]

13763

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13764

\[ {} [x^{\prime }\left (t \right ) = -6 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )] \]

13765

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )] \]

13766

\[ {} [x^{\prime }\left (t \right ) = 13 x \left (t \right ), y^{\prime }\left (t \right ) = 13 y \left (t \right )] \]

13767

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

13768

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

13769

\[ {} \tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

13770

\[ {} 12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

13771

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}}+y \]

13772

\[ {} x y^{\prime }+y = x^{3} \]

13773

\[ {} y-x y^{\prime } = x^{2} y y^{\prime } \]

13774

\[ {} x^{\prime }+3 x = {\mathrm e}^{2 t} \]

13775

\[ {} y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

13776

\[ {} y^{\prime } = {\mathrm e}^{x -y} \]

13777

\[ {} x^{\prime } = x+\sin \left (t \right ) \]

13778

\[ {} x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

13779

\[ {} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

13780

\[ {} {y^{\prime }}^{2} = 9 y^{4} \]

13781

\[ {} x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

13782

\[ {} x^{2}+{y^{\prime }}^{2} = 1 \]

13783

\[ {} y = x y^{\prime }+\frac {1}{y} \]

13784

\[ {} x = {y^{\prime }}^{3}-y^{\prime }+2 \]

13785

\[ {} y^{\prime } = \frac {y}{x +y^{3}} \]

13786

\[ {} y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

13787

\[ {} {y^{\prime }}^{2}+y^{2} = 4 \]

13788

\[ {} y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

13789

\[ {} y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

13790

\[ {} y^{\prime } = x +y^{2} \]

13791

\[ {} y^{\prime } = x y^{3}+x^{2} \]

13792

\[ {} y^{\prime } = x^{2}-y^{2} \]

13793

\[ {} 2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

13794

\[ {} {y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

13795

\[ {} y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

13796

\[ {} y^{\prime } = x -y^{2} \]

13797

\[ {} y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

13798

\[ {} \left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

13799

\[ {} x^{\prime }+5 x = 10 t +2 \]

13800

\[ {} x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]