6.18 Problems 1701 to 1800

Table 6.35: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

1701

\[ {}\left (2 x -1\right ) \left (y-1\right )+\left (x +2\right ) \left (x -3\right ) y^{\prime } = 0 \]

1702

\[ {}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0 \]

1703

\[ {}{\mathrm e}^{x} \left (y^{2} x^{4}+4 y^{2} x^{3}+1\right )+\left (2 x^{4} y \,{\mathrm e}^{x}+2 y\right ) y^{\prime } = 0 \]

1704

\[ {}y^{4} x^{3}+x +\left (y^{3} x^{4}+y\right ) y^{\prime } = 0 \]

1705

\[ {}3 x^{2}+2 y+\left (2 y+2 x \right ) y^{\prime } = 0 \]

1706

\[ {}y^{4} x^{3}+2 x +\left (y^{3} x^{4}+3 y\right ) y^{\prime } = 0 \]

1707

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

1708

\[ {}y^{\prime }+\frac {2 y}{x} = -\frac {2 x y}{x^{2}+2 x^{2} y+1} \]

1709

\[ {}y^{\prime }-\frac {3 y}{x} = \frac {2 x^{4} \left (4 x^{3}-3 y\right )}{3 x^{5}+3 x^{3}+2 y} \]

1710

\[ {}y^{\prime }+2 x y = -\frac {{\mathrm e}^{-x^{2}} \left (3 x +2 y \,{\mathrm e}^{x^{2}}\right )}{2 x +3 y \,{\mathrm e}^{x^{2}}} \]

1711

\[ {}y+\left (2 x +\frac {1}{y}\right ) y^{\prime } = 0 \]

1712

\[ {}-y^{2}+x^{2} y^{\prime } = 0 \]

1713

\[ {}-x y^{\prime }+y = 0 \]

1714

\[ {}3 x^{2} y+2 x^{3} y^{\prime } = 0 \]

1715

\[ {}2 y^{3}+3 y^{\prime } y^{2} = 0 \]

1716

\[ {}5 x y+2 y+5+2 x y^{\prime } = 0 \]

1717

\[ {}x y+x +2 y+1+\left (1+x \right ) y^{\prime } = 0 \]

1718

\[ {}27 x y^{2}+8 y^{3}+\left (18 x^{2} y+12 x y^{2}\right ) y^{\prime } = 0 \]

1719

\[ {}6 x y^{2}+2 y+\left (12 x^{2} y+6 x +3\right ) y^{\prime } = 0 \]

1720

\[ {}y^{2}+\left (x y^{2}+6 x y+\frac {1}{y}\right ) y^{\prime } = 0 \]

1721

\[ {}12 x^{3} y+24 x^{2} y^{2}+\left (9 x^{4}+32 x^{3} y+4 y\right ) y^{\prime } = 0 \]

1722

\[ {}x^{2} y+4 x y+2 y+\left (x^{2}+x \right ) y^{\prime } = 0 \]

1723

\[ {}-y+\left (x^{4}-x \right ) y^{\prime } = 0 \]

1724

\[ {}\cos \left (x \right ) \cos \left (y\right )+\left (\sin \left (x \right ) \cos \left (y\right )-\sin \left (x \right ) \sin \left (y\right )+y\right ) y^{\prime } = 0 \]

1725

\[ {}2 x y+y^{2}+\left (2 x y+x^{2}-2 x^{2} y^{2}-2 x y^{3}\right ) y^{\prime } = 0 \]

1726

\[ {}y \sin \left (y\right )+x \left (\sin \left (y\right )-y \cos \left (y\right )\right ) y^{\prime } = 0 \]

1727

\[ {}a y+b x y+\left (c x +d x y\right ) y^{\prime } = 0 \]

1728

\[ {}3 x^{2} y^{3}-y^{2}+y+\left (-x y+2 x \right ) y^{\prime } = 0 \]

1729

\[ {}2 y+3 \left (x^{2}+x^{2} y^{3}\right ) y^{\prime } = 0 \]

1730

\[ {}a \cos \left (x \right ) y-y^{2} \sin \left (x \right )+\left (b \cos \left (x \right ) y-x \sin \left (x \right ) y\right ) y^{\prime } = 0 \]

1731

\[ {}y^{4} x^{4}+x^{5} y^{3} y^{\prime } = 0 \]

1732

\[ {}y \left (x \cos \left (x \right )+2 \sin \left (x \right )\right )+x \left (1+y\right ) y^{\prime } = 0 \]

1733

\[ {}y^{3} x^{4}+y+\left (x^{5} y^{2}-x \right ) y^{\prime } = 0 \]

1734

\[ {}3 x y+2 y^{2}+y+\left (x^{2}+2 x y+x +2 y\right ) y^{\prime } = 0 \]

1735

\[ {}12 x y+6 y^{3}+\left (9 x^{2}+10 x y^{2}\right ) y^{\prime } = 0 \]

1736

\[ {}3 x^{2} y^{2}+2 y+2 x y^{\prime } = 0 \]

1737

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

1738

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1739

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

1740

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1741

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1743

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

1744

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

1745

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

1746

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

1747

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

1751

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

1752

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1753

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y = 0 \]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1755

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1756

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1757

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} \]

1758

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {4}{x^{2}} \]

1759

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

1760

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

1761

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 7 x^{{3}/{2}} {\mathrm e}^{x} \]

1762

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \left (4 x +1\right ) \]

1763

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sec \left (x \right ) \]

1764

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 8 \,{\mathrm e}^{-x \left (x +2\right )} \]

1765

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -6 x -4 \]

1766

\[ {}x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = x^{3} {\mathrm e}^{2 x} \]

1767

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = {\mathrm e}^{x} x^{2} \]

1768

\[ {}\left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = \left (4 x^{2}-4 x +1\right ) {\mathrm e}^{x} \]

1769

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1770

\[ {}2 x y^{\prime \prime }+\left (4 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 3 \sqrt {x}\, {\mathrm e}^{-x} \]

1771

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = -{\mathrm e}^{-x} \]

1772

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = 4 x^{{5}/{2}} {\mathrm e}^{2 x} \]

1773

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 4 x^{2} \]

1774

\[ {}x y^{\prime \prime }+\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

1775

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

1776

\[ {}x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0 \]

1777

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1778

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

1779

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

1780

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

1781

\[ {}x y^{\prime \prime }-\left (4 x +1\right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1782

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1783

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

1784

\[ {}\left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1785

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1786

\[ {}x y^{\prime \prime }-\left (4 x +1\right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1787

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 4 x^{4} \]

1788

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

1789

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = \left (1+x \right )^{3} {\mathrm e}^{x} \]

1790

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = x^{2} \]

1791

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x +2 \]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

1799

\[ {}x^{2} \left (y^{\prime }+y^{2}\right )-x \left (x +2\right ) y+x +2 = 0 \]

1800

\[ {}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0 \]