5.1.74 Problems 7301 to 7400

Table 5.147: First order ode

#

ODE

Mathematica

Maple

16751

\[ {}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0 \]

16752

\[ {}x +y+\left (x +y-1\right ) y^{\prime } = 0 \]

16753

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

16754

\[ {}4 y^{6}+x^{3} = 6 x y^{5} y^{\prime } \]

16755

\[ {}y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 x y^{\prime } = 0 \]

16756

\[ {}x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0 \]

16757

\[ {}y^{\prime }+2 y = {\mathrm e}^{-x} \]

16758

\[ {}x^{2}-x y^{\prime } = y \]

16759

\[ {}y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}} \]

16760

\[ {}y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

16761

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = 2 x \]

16762

\[ {}x y^{\prime }-2 y = x^{3} \cos \left (x \right ) \]

16763

\[ {}y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}} \]

16764

\[ {}y^{\prime } x \ln \left (x \right )-y = 3 x^{3} \ln \left (x \right )^{2} \]

16765

\[ {}\left (2 x -y^{2}\right ) y^{\prime } = 2 y \]

16766

\[ {}y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right ) \]

16767

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

16768

\[ {}\left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0 \]

16769

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}} \]

16770

\[ {}y^{\prime }+x y \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}} \]

16771

\[ {}y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (-1+\cos \left (x \right )\right ) \ln \left (2\right ) \]

16772

\[ {}y^{\prime }-y = -2 \,{\mathrm e}^{-x} \]

16773

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}} \]

16774

\[ {}x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1 \]

16775

\[ {}2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}} \]

16776

\[ {}x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x} \]

16777

\[ {}x y^{\prime }+y = 2 x \]

16778

\[ {}\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 1 \]

16779

\[ {}y^{\prime } \cos \left (x \right )-y \sin \left (x \right ) = -\sin \left (2 x \right ) \]

16780

\[ {}y^{\prime }+2 x y = 2 x y^{2} \]

16781

\[ {}3 y^{2} y^{\prime } x -2 y^{3} = x^{3} \]

16782

\[ {}\left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2} \]

16783

\[ {}y^{\prime }+3 x y = y \,{\mathrm e}^{x^{2}} \]

16784

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

16785

\[ {}2 y^{\prime } \ln \left (x \right )+\frac {y}{x} = \frac {\cos \left (x \right )}{y} \]

16786

\[ {}2 \sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = y^{3} \sin \left (x \right )^{2} \]

16787

\[ {}\left (1+x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

16788

\[ {}y^{\prime }-y \cos \left (x \right ) = y^{2} \cos \left (x \right ) \]

16789

\[ {}y^{\prime }-\tan \left (y\right ) = \frac {{\mathrm e}^{x}}{\cos \left (y\right )} \]

16790

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

16791

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = 1+x \]

16792

\[ {}y y^{\prime }+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

16793

\[ {}y^{\prime }+x \sin \left (2 y\right ) = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

16794

\[ {}x \left (2 x^{2}+y^{2}\right )+y \left (2 y^{2}+x^{2}\right ) y^{\prime } = 0 \]

16795

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

16796

\[ {}\frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

16797

\[ {}3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

16798

\[ {}2 x +\frac {x^{2}+y^{2}}{x^{2} y} = \frac {\left (x^{2}+y^{2}\right ) y^{\prime }}{x y^{2}} \]

16799

\[ {}\frac {\sin \left (2 x \right )}{y}+x +\left (y-\frac {\sin \left (x \right )^{2}}{y^{2}}\right ) y^{\prime } = 0 \]

16800

\[ {}3 x^{2}-2 x -y+\left (2 y-x +3 y^{2}\right ) y^{\prime } = 0 \]

16801

\[ {}\frac {x y}{\sqrt {x^{2}+1}}+2 x y-\frac {y}{x}+\left (\sqrt {x^{2}+1}+x^{2}-\ln \left (x \right )\right ) y^{\prime } = 0 \]

16802

\[ {}\sin \left (y\right )+y \sin \left (x \right )+\frac {1}{x}+\left (x \cos \left (y\right )-\cos \left (x \right )+\frac {1}{y}\right ) y^{\prime } = 0 \]

16803

\[ {}\frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

16804

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

16805

\[ {}y \left (x^{2}+y^{2}+a^{2}\right ) y^{\prime }+x \left (-a^{2}+x^{2}+y^{2}\right ) = 0 \]

16806

\[ {}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

16807

\[ {}1-x^{2} y+x^{2} \left (y-x \right ) y^{\prime } = 0 \]

16808

\[ {}x^{2}+y-x y^{\prime } = 0 \]

16809

\[ {}x +y^{2}-2 x y y^{\prime } = 0 \]

16810

\[ {}2 x^{2} y+2 y+5+\left (2 x^{3}+2 x \right ) y^{\prime } = 0 \]

16811

\[ {}x^{4} \ln \left (x \right )-2 x y^{3}+3 y^{2} y^{\prime } x^{2} = 0 \]

16812

\[ {}x +\sin \left (x \right )+\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

16813

\[ {}2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime } = 0 \]

16814

\[ {}3 y^{2}-x +\left (2 y^{3}-6 x y\right ) y^{\prime } = 0 \]

16815

\[ {}x^{2}+y^{2}+1-2 x y y^{\prime } = 0 \]

16816

\[ {}x -x y+\left (x^{2}+y\right ) y^{\prime } = 0 \]

16817

\[ {}4 {y^{\prime }}^{2}-9 x = 0 \]

16818

\[ {}{y^{\prime }}^{2}-2 y y^{\prime } = y^{2} \left ({\mathrm e}^{2 x}-1\right ) \]

16819

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }-8 x^{2} = 0 \]

16820

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

16821

\[ {}{y^{\prime }}^{2}-\left (y+2 x \right ) y^{\prime }+x^{2}+x y = 0 \]

16822

\[ {}{y^{\prime }}^{3}+\left (x +2\right ) {\mathrm e}^{y} = 0 \]

16823

\[ {}{y^{\prime }}^{3} = y {y^{\prime }}^{2}-x^{2} y^{\prime }+x^{2} y \]

16824

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

16825

\[ {}{y^{\prime }}^{2}-4 x y^{\prime }+2 y+2 x^{2} = 0 \]

16826

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

16827

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

16828

\[ {}x = \ln \left (y^{\prime }\right )+\sin \left (y^{\prime }\right ) \]

16829

\[ {}x = {y^{\prime }}^{2}-2 y^{\prime }+2 \]

16830

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

16831

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

16832

\[ {}x {y^{\prime }}^{2} = {\mathrm e}^{\frac {1}{y^{\prime }}} \]

16833

\[ {}x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = a \]

16834

\[ {}y^{{2}/{5}}+{y^{\prime }}^{{2}/{5}} = a^{{2}/{5}} \]

16835

\[ {}x = y^{\prime }+\sin \left (y^{\prime }\right ) \]

16836

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

16837

\[ {}y = \arcsin \left (y^{\prime }\right )+\ln \left (1+{y^{\prime }}^{2}\right ) \]

16838

\[ {}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

16839

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

16840

\[ {}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right ) \]

16841

\[ {}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }} \]

16842

\[ {}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }} \]

16843

\[ {}y = x y^{\prime }+\frac {a}{{y^{\prime }}^{2}} \]

16844

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

16845

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y^{\prime }+1 = 0 \]

16846

\[ {}y = x y^{\prime }+a \sqrt {1+{y^{\prime }}^{2}} \]

16847

\[ {}x = \frac {y}{y^{\prime }}+\frac {1}{{y^{\prime }}^{2}} \]

16848

\[ {}y^{\prime } {\mathrm e}^{-x}+y^{2}-2 y \,{\mathrm e}^{x} = 1-{\mathrm e}^{2 x} \]

16849

\[ {}y^{\prime }+y^{2}-2 y \sin \left (x \right )+\sin \left (x \right )^{2}-\cos \left (x \right ) = 0 \]

16850

\[ {}x y^{\prime }-y^{2}+\left (2 x +1\right ) y = x^{2}+2 x \]