5.2.11 Problems 1001 to 1100

Table 5.189: Second order linear ODE

#

ODE

Mathematica

Maple

4133

\[ {}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x} \]

4134

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

4135

\[ {}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x} \]

4136

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

4137

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

4138

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right ) \]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4140

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

4141

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (p x \right ) \]

4152

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right ) \]

4153

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1 \]

4154

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \]

4155

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \]

4156

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+{\mathrm e}^{2 x} x \]

4157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (2 x \right ) x \]

4158

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right ) \]

4161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4162

\[ {}y^{\prime \prime }+9 y = 8 \sin \left (x \right ) \]

4163

\[ {}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]

4164

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \]

4426

\[ {}x y^{\prime \prime } = y^{\prime }+x \]

4456

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

4457

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

4458

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

4459

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

4460

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

4470

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 36 \,{\mathrm e}^{2 x} x \]

4474

\[ {}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

4476

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

4479

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (1+x \right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

4480

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

4481

\[ {}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

4482

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{x} x^{2}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

4483

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

4485

\[ {}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

4486

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

4487

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

4488

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

4497

\[ {}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

4498

\[ {}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

4499

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

4500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {1+x} \]

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}} \]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

4509

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

4510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

4514

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 60 \cos \left (3 t \right ) \]

4515

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 9 \,{\mathrm e}^{-2 t} \]

4516

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 t^{2}+1 \]

4517

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \]

4518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \]

4519

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 8 \sin \left (t \right ) {\mathrm e}^{-t} \]

4520

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

4521

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 54 t \,{\mathrm e}^{-2 t} \]

4522

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \]

4523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4524

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4525

\[ {}y^{\prime \prime }+4 y = 8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (t -2\right ) \]

4526

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \]

4527

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \delta \left (t -2\right ) \]

4528

\[ {}y^{\prime \prime }+4 y = 4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

5917

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

5918

\[ {}y^{\prime \prime }-y = 0 \]

5919

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

5920

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5925

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

5926

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

5928

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5931

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

5937

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5938

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

5940

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

5945

\[ {}y^{\prime \prime } = 0 \]

5946

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

5947

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5948

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

5950

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

5951

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

5952

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

5953

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

5954

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

5955

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

5956

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \sin \left (x \right ) {\mathrm e}^{2 x} \]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

5961

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

5962

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

5963

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

5964

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]