4.4.1 Problems 1 to 100

Table 4.45: Problems solved by Mathematica but not by Maple

#

ODE

Mathematica

Maple

39

\[ {}y^{\prime } = y^{2}+x^{2}-1 \]

416

\[ {}x^{2} y^{\prime }+y = 0 \]

417

\[ {}x^{3} y^{\prime } = 2 y \]

459

\[ {}x^{2} y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+x y = 0 \]

460

\[ {}3 x^{3} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

472

\[ {}x^{3} \left (1-x \right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+x y = 0 \]

491

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

492

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

1058

\[ {}x^{2} y^{\prime }+y = 0 \]

1059

\[ {}x^{3} y^{\prime } = 2 y \]

2178

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime }-2 y = {\mathrm e}^{2 x} \left (\left (-x^{2}+5 x +27\right ) \cos \left (x \right )+\left (9 x^{2}+13 x +2\right ) \sin \left (x \right )\right ) \]

2442

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2445

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2453

\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

2639

\[ {}t \left (t -2\right )^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2642

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }+\frac {y^{\prime }}{\sin \left (t +1\right )}+y = 0 \]

2659

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

2906

\[ {}2 x +3 y+2+\left (y-x \right ) y^{\prime } = 0 \]

2909

\[ {}3 x -y+2+\left (x +2 y+1\right ) y^{\prime } = 0 \]

2955

\[ {}\left (x^{2}+y^{2}-2 y\right ) y^{\prime } = 2 x \]

3034

\[ {}\sec \left (y\right )^{2} y^{\prime } = \tan \left (y\right )+2 x \,{\mathrm e}^{x} \]

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3371

\[ {}x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 x y^{\prime }-\left (1+x \right ) y = 0 \]

3512

\[ {}y^{\prime \prime }+\frac {y}{z^{3}} = 0 \]

4009

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0 \]

4251

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

4726

\[ {}y^{\prime } = \left (1+\cos \left (x \right ) \sin \left (y\right )\right ) \tan \left (y\right ) \]

4739

\[ {}2 y^{\prime } = 2 \sin \left (y\right )^{2} \tan \left (y\right )-x \sin \left (2 y\right ) \]

5216

\[ {}\left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime } = y^{3} \csc \left (x \right ) \sec \left (x \right ) \]

5270

\[ {}\left (x \,a^{2}+y \left (x^{2}-y^{2}\right )\right ) y^{\prime }+x \left (x^{2}-y^{2}\right ) = a^{2} y \]

5339

\[ {}{y^{\prime }}^{2}+a \,x^{2}+b y = 0 \]

5384

\[ {}{y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0 \]

5507

\[ {}x^{3} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5542

\[ {}x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

5543

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

5642

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5687

\[ {}y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

6045

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6058

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

6062

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

6066

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

6067

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

6258

\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

6346

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

6560

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

6843

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

6844

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

6845

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

6864

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

6869

\[ {}x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0 \]

6878

\[ {}t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]

7224

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

7232

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

7256

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

7257

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

7258

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

7501

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

7710

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

7851

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

7906

\[ {}x y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

8086

\[ {}x^{2} y^{\prime } = y \]

8109

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

8111

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

8117

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8127

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

8128

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8252

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

8260

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8285

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

8286

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8387

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

8488

\[ {}y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

8892

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

8893

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

8894

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

8898

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

8899

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

8901

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

8909

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

8968

\[ {}y^{\prime }+y = \frac {1}{x} \]

8969

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

8971

\[ {}y^{\prime } = \frac {1}{x} \]

8972

\[ {}y^{\prime \prime } = \frac {1}{x} \]

8973

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

8974

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

8975

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

9065

\[ {}t y^{\prime }+y = \sin \left (t \right ) \]

10381

\[ {}{y^{\prime }}^{2}+a y+b \,x^{2} = 0 \]

10396

\[ {}{y^{\prime }}^{2}+a x y^{\prime }+b y+c \,x^{2} = 0 \]

10463

\[ {}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

10523

\[ {}\left (a \left (x^{2}+y^{2}\right )^{{3}/{2}}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+a \left (x^{2}+y^{2}\right )^{{3}/{2}}-y^{2} = 0 \]

10524

\[ {}{y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4} = 0 \]

10548

\[ {}x^{3} {y^{\prime }}^{3}-3 y {y^{\prime }}^{2} x^{2}+\left (3 x y^{2}+x^{6}\right ) y^{\prime }-y^{3}-2 x^{5} y = 0 \]

10554

\[ {}x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

10744

\[ {}y^{\prime } = \frac {2 x \sin \left (x \right )-\ln \left (2 x \right )+\ln \left (2 x \right ) x^{4}-2 \ln \left (2 x \right ) x^{2} y+\ln \left (2 x \right ) y^{2}}{\sin \left (x \right )} \]

10800

\[ {}y^{\prime } = -\frac {\ln \left (x -1\right )-\coth \left (1+x \right ) x^{2}-2 \coth \left (1+x \right ) x y-\coth \left (1+x \right )-\coth \left (1+x \right ) y^{2}}{\ln \left (x -1\right )} \]

10801

\[ {}y^{\prime } = \frac {2 x \ln \left (\frac {1}{x -1}\right )-\coth \left (\frac {1+x}{x -1}\right )+\coth \left (\frac {1+x}{x -1}\right ) y^{2}-2 \coth \left (\frac {1+x}{x -1}\right ) x^{2} y+\coth \left (\frac {1+x}{x -1}\right ) x^{4}}{\ln \left (\frac {1}{x -1}\right )} \]

10922

\[ {}y^{\prime } = \frac {2 a x}{-x^{3} y+2 a \,x^{3}+2 a y^{4} x^{3}-16 y^{2} a^{2} x^{2}+32 x \,a^{3}+2 a y^{6} x^{3}-24 y^{4} a^{2} x^{2}+96 y^{2} x \,a^{3}-128 a^{4}} \]