5.7.9 Problems 801 to 900

Table 5.579: Solved using series method

#

ODE

Mathematica

Maple

6062

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

6063

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

6064

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

6065

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

6066

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

6067

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

6068

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

6069

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

6070

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

6071

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

6072

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

6073

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

6074

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

6236

\[ {}x y^{\prime } = x y+y \]

6238

\[ {}y^{\prime } = 3 x^{2} y \]

6240

\[ {}x y^{\prime } = y \]

6242

\[ {}y^{\prime \prime } = -4 y \]

6244

\[ {}y^{\prime \prime } = y \]

6246

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

6250

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

6252

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6254

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6345

\[ {}\left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

6346

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

6347

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \left (x \right ) = 0 \]

6348

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

6349

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

6350

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

6351

\[ {}\sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

6352

\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

6353

\[ {}\sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

6354

\[ {}y^{\prime }+\left (x +2\right ) y = 0 \]

6355

\[ {}y^{\prime }-y = 0 \]

6356

\[ {}z^{\prime }-x^{2} z = 0 \]

6357

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

6358

\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

6359

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6360

\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

6361

\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6362

\[ {}\left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

6363

\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

6364

\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

6365

\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

6366

\[ {}y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

6367

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

6368

\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \]

6369

\[ {}y^{\prime }-2 x y = 0 \]

6370

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

6371

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

6372

\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

6373

\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

6374

\[ {}x^{\prime }+\sin \left (t \right ) x = 0 \]

6375

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

6376

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

6377

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

6378

\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]

6379

\[ {}y^{\prime }-x y = \sin \left (x \right ) \]

6380

\[ {}w^{\prime }+w x = {\mathrm e}^{x} \]

6381

\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

6382

\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

6383

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \left (x \right ) \]

6384

\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \left (x \right ) \]

6385

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

6386

\[ {}y^{\prime \prime }-y \sin \left (x \right ) = \cos \left (x \right ) \]

6387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

6559

\[ {}\left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+x y = 0 \]

6560

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

6561

\[ {}y^{\prime \prime }+x y = 0 \]

6562

\[ {}y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

6563

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

6564

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

6565

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

6566

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

6567

\[ {}y^{\prime \prime }-x y = 0 \]

6568

\[ {}y^{\prime \prime }-2 x y^{\prime }+x^{2} y = 0 \]

6792

\[ {}\left (1-x \right ) y^{\prime } = x^{2}-y \]

6793

\[ {}x y^{\prime } = 1-x +2 y \]

6795

\[ {}y^{\prime } = 2 x^{2}+3 y \]

6796

\[ {}\left (1+x \right ) y^{\prime } = x^{2}-2 x +y \]

6797

\[ {}y^{\prime \prime }+x y = 0 \]

6798

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

6799

\[ {}y^{\prime \prime }-x y^{\prime }+x^{2} y = 0 \]

6800

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

6801

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

6802

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

6803

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

6804

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

6805

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

6806

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

6807

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6808

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

6809

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

6810

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = 1+x \]

6811

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

6812

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

6813

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

6814

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

6815

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (x y^{\prime }-y\right ) = 0 \]

6816

\[ {}x^{3} \left (1+x \right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]