5.7.8 Problems 701 to 800

Table 5.577: Solved using series method

#

ODE

Mathematica

Maple

4031

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{5}+9 x \right ) y^{\prime }+\left (10 x^{4}+5 x^{2}+25\right ) y = 0 \]

4032

\[ {}x^{2} y^{\prime \prime }+\left (4 x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}\right ) y^{\prime }-\frac {7 y}{4} = 0 \]

4033

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

4034

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

4035

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+y = 0 \]

4036

\[ {}x^{2} y^{\prime \prime }+x \cos \left (x \right ) y^{\prime }-2 y \,{\mathrm e}^{x} = 0 \]

4037

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

4038

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

4039

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x -1\right ) y = 0 \]

4040

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }-\left (x +2\right ) y = 0 \]

4041

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+7 x \,{\mathrm e}^{x} y^{\prime }+9 \left (1+\tan \left (x \right )\right ) y = 0 \]

4042

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

4043

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1-x \right ) y = 0 \]

4044

\[ {}x y^{\prime \prime }-y = 0 \]

4045

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

4046

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

4047

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

4048

\[ {}x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

4049

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

4050

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

4051

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

4052

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y = 0 \]

4053

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

4054

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

4055

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

4056

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

4057

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

4058

\[ {}4 x^{2} y^{\prime \prime }-\left (3+4 x \right ) y = 0 \]

4059

\[ {}x y^{\prime \prime }-x y^{\prime }+y = 0 \]

4060

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

4061

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

4062

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

4063

\[ {}y^{\prime \prime }+x y = 0 \]

4064

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

4065

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-6 x y^{\prime }-4 y = 0 \]

4066

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

4067

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

4068

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

4069

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

4070

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

4071

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

4072

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

4073

\[ {}x^{2} y^{\prime \prime }+\frac {3 x y^{\prime }}{2}-\frac {\left (1+x \right ) y}{2} = 0 \]

4074

\[ {}x^{2} y^{\prime \prime }-x \left (2-x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

4075

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (1+x \right ) y = 0 \]

4076

\[ {}y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y = 0 \]

4178

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

4179

\[ {}y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}} = 0 \]

4180

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x} = 0 \]

4181

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

4182

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (\frac {1}{4 x^{2}}-1\right ) y = 0 \]

4183

\[ {}y^{\prime \prime }-\frac {\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )}{x \left (-x^{2}+2\right )} = 0 \]

4184

\[ {}y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )} = 0 \]

4185

\[ {}y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x} = 0 \]

4186

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0 \]

4187

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y = 0 \]

4188

\[ {}y^{\prime \prime }+\frac {\left (1-5 x \right ) y^{\prime }}{-x^{2}+x}-\frac {4 y}{-x^{2}+x} = 0 \]

4189

\[ {}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x \left (1+x \right )}-\frac {y}{x \left (1+x \right )} = 0 \]

4588

\[ {}y^{\prime \prime }-x y = 0 \]

4589

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

4590

\[ {}y^{\prime \prime }+x y = 0 \]

4591

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

4592

\[ {}y^{\prime \prime }-2 x^{2} y = 0 \]

4593

\[ {}y^{\prime \prime }-2 x^{2} y^{\prime }+x y = 0 \]

4594

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (4 x -1\right ) y^{\prime }+2 y = 0 \]

4595

\[ {}y^{\prime \prime }+\left (1+\cos \left (x \right )\right ) y = 0 \]

4596

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

4597

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

4598

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

4599

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-x y = 0 \]

4600

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y = 0 \]

4601

\[ {}x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+x y = 0 \]

4602

\[ {}x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-\left (1+x \right ) y = 0 \]

4603

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-\left (x^{2}+2\right ) y = 0 \]

4604

\[ {}x y^{\prime \prime }-2 x y^{\prime }-y = 0 \]

4605

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

4606

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+2 \left (x -1\right ) y = 0 \]

4607

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

6040

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

6041

\[ {}y^{\prime \prime }+x y = 0 \]

6042

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

6043

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

6044

\[ {}y^{\prime \prime }+a \,x^{2} y = 1+x \]

6045

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6046

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

6047

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

6048

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

6049

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

6050

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

6051

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y = 0 \]

6052

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

6053

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

6054

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

6055

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6056

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

6057

\[ {}x y^{\prime \prime }+y = 0 \]

6058

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

6059

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

6060

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

6061

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]