5.7.17 Problems 1601 to 1700

Table 5.595: Solved using series method

#

ODE

Mathematica

Maple

15684

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15685

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

15686

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\frac {2 y}{x^{2}+4} = 0 \]

15687

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{1-{\mathrm e}^{x}} = 0 \]

15688

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

15689

\[ {}x y^{\prime \prime }+\left (1-{\mathrm e}^{x}\right ) y = 0 \]

15690

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

15691

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15692

\[ {}y^{\prime }+y \,{\mathrm e}^{2 x} = 0 \]

15693

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

15694

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

15695

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

15696

\[ {}y^{\prime \prime }+3 x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15697

\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \]

15698

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

15699

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

15700

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

15701

\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

15702

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

15703

\[ {}\cos \left (x \right ) y^{\prime }+y = 0 \]

15704

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

15705

\[ {}y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

15706

\[ {}y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

15707

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

15708

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

15709

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

15710

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

15711

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

15712

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

15713

\[ {}3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

15714

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

15715

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

15716

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

15717

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

15718

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

15719

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

15720

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

15721

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

15722

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

15723

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

15724

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

15725

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

15726

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

15727

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

15728

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

15729

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

15730

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

15731

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

15732

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

15733

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

15734

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

15735

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

15736

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

15737

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

15738

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

15739

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

15740

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

15741

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

15742

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

15743

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

15744

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

15745

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

15746

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

15747

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

15748

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0 \]

15749

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

15750

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

15751

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

15752

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

15753

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

15754

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

15755

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

15756

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

16507

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

16508

\[ {}\left (x -2\right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

16509

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (x +2\right ) y^{\prime }-y = 0 \]

16510

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

16511

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

16512

\[ {}y^{\prime \prime }+y = 0 \]

16513

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

16514

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

16515

\[ {}\left (3 x +2\right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

16516

\[ {}\left (1+3 x \right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

16517

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+4 y = 0 \]

16518

\[ {}y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

16519

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16520

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

16521

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]

16522

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16523

\[ {}y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

16524

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

16525

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

16526

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

16527

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

16528

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

16529

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

16530

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

16531

\[ {}y^{\prime \prime }-y \cos \left (x \right ) = \sin \left (x \right ) \]

16532

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

16533

\[ {}x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]